40 Prozent der fMRT-Signale stimmen nicht mit tatsächlicher Hirnaktivität überein

Studie zeigt, dass es keinen generell gültigen Zusammenhang zwischen dem im fMRT gemessenen Sauerstoffgehalt und neuronaler Aktivität gibt. (Bild: © Bartek/stock.adobe.com)

Seit fast drei Jahrzehnten ist die funktionelle Magnetresonanztomographie (fMRT) eines der Hauptinstrumente der Hirnforschung. Doch eine neue Studie hat herausgefunden, dass es keinen generell gültigen Zusammenhang zwischen dem im MRT gemessenen Sauerstoffgehalt und neuronaler Aktivität gibt.

Die Forschenden der Technischen Universität München (TUM) und der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) fanden in ihren Untersuchungen heraus, dass ein erhöhtes fMRT-Signal in rund 40 Prozent der Fälle mit erniedrigter Hirnaktivität zusammenhängt. Gleichzeitig fanden sie reduzierte fMRT-Signale in Regionen mit erhöhter Aktivität. Erstautorin Dr. Samira Epp betont: „Das widerspricht der bislang geltenden Annahme, dass erhöhte Hirnaktivität immer mit erhöhtem Blutfluss zur Deckung des gestiegenen Sauerstoffbedarfs einhergeht. Da weltweit zehntausende fMRT-Studien auf dieser Annahme beruhen, könnten unsere Ergebnisse bei vielen davon zu entgegengesetzten Interpretationen führen.“ Die Ergebnisse wurden in „Nature Neuroscience“ veröffentlicht.

Testaufgaben zeigen Abweichungen von der Standardinterpretation

Prof. Valentin Riedl von der FAU und seine Kollegin Epp untersuchten in ihrer Zeit an der TUM mehr als 40 gesunde Probandinnen und Probanden. Sie stellten ihnen jeweils mehrere Versuchsaufgaben, wie zum Beispiel Kopfrechnen oder autobiographisches Erinnern, die im fMRT zu erwartbaren Signaländerungen in verteilten Hirnregionen führen. Währenddessen maßen die Forschenden zugleich den tatsächlichen Sauerstoffverbrauch mit einem neuartigen, quantitativen MRT-Verfahren.

Je nach Aufgabe und Hirnregion zeigten sich unterschiedliche physiologische Ergebnisse. Ein erhöhter Sauerstoffverbrauch, etwa in Regionen, die beim Rechnen beteiligt sind, ging nicht mit dem eigentlich erwarteten höheren Blutfluss einher. Hingegen zeigten die quantitativen Auswertungen, dass diese Hirnregionen ihren zusätzlichen Energiebedarf durch eine höhere Entnahme von Sauerstoff aus dem unveränderten Blutstrom deckten. Sie nutzen somit den im Blut vorhandenen Sauerstoff effizienter, ohne mehr Durchblutung zu benötigen.

Auswirkungen auf Interpretation von Hirnerkrankungen

Die Erkenntnisse berühren nach Einschätzung von Riedl auch Forschungsergebnisse zu Hirnerkrankungen: „Viele fMRT‑Studien zu psychiatrischen oder neurologischen Erkrankungen – von Depression bis Alzheimer – interpretieren Änderungen im Blutfluss als verlässliches Signal neuronaler Unter‑ oder Überaktivierung. Dies muss nun wegen der beschränkten Aussagekraft dieser Ergebnisse neu bewertet werden. Gerade in Patientengruppen mit vaskulären Veränderungen, etwa bei Alterungs‑ oder Gefäßerkrankungen, könnten die Messwerte primär auf Gefäßunterschieden statt auf neuronalen Defiziten basieren.“ Darauf deuten bereits frühere tierexperimentelle Befunde hin.

Die Forschenden schlagen deshalb vor, die herkömmliche MRT-Methode mit quantitativen Messungen zu ergänzen. Diese Kombination könnte langfristig die Grundlage für energetisch basierte Gehirnmodelle bilden: Statt Aktivierungskarten mit Annahmen zum Blutfluss zu zeigen, würden Werte dann abbilden, wie viel Sauerstoff und somit Energie tatsächlich zur Informationsverarbeitung verbraucht werden. Das eröffnet den Autoren zufolge neue Wege, um Alterungsprozesse, psychiatrische oder neurodegenerative Erkrankungen unter dem Aspekt absolut veränderten Energiestoffwechsels zu betrachten und besser zu verstehen.