Besser zur Krebsdiagnostik: Fragmentomische Analyse von Panels für zirkulierende Tumor-DNA18. Dezember 2023 Foto: © Петр Смагин – stock.adobe.com Wissenschaftler haben festgestellt, dass die Unterscheidung von Krebs- und Subtypen sowie von Krebs versus tumorfrei machbar ist. Die Isolierung zellfreier DNA (cfDNA) aus dem Blutkreislauf kann bekanntlich zum Nachweis und zur Analyse somatischer Veränderungen in der zirkulierenden Tumor-DNA (ctDNA) verwendet werden. Mittlerweile sind mehrere auf cfDNA ausgerichtete Sequenzierungspanels für von der Food and Drug Administration (FDA) zugelassene Biomarker-Indikationen kommerziell erhältlich, um die Behandlung zu steuern. Wie Wissenschaftler um Kyle T. Helzer von der University of Wisconsin in Madison, USA, berichten, haben sich in jüngerer Zeit cfDNA-Fragmentierungsmuster als Instrument zur Ableitung epigenomischer und transkriptomischer Informationen herausgestellt. Bei den meisten dieser Analysen sei jedoch die Sequenzierung des Gesamtgenoms verwendet worden, was nicht ausreiche, um von der FDA zugelassene Biomarker-Indikationen auf günstige Weise zu identifizieren. Daher setzten die Autoren Modelle mit Maschinellem Lernen von Fragmentierungsmustern am ersten kodierenden Exon in standardmäßigen auf Krebsgene abzielenden cfDNA-Sequenzierungspanels ein, um zwischen Patienten mit und ohne Krebs sowie dem spezifischen Tumortyp und -subtyp zu unterscheiden. Diesen Ansatz bewerteten sie in 2 unabhängigen Kohorten: einer veröffentlichten Kohorte von GRAIL (Brust-, Lungen- und Prostatakrebs, kein Krebs, n=198) und einer institutionellen Kohorte von der University of Wisconsin (UW; Krebserkrankungen von Brust, Lunge, Prostata und Blase; n=320). Jede Kohorte wurde zu 70%/30% in Trainings- und Validierungssätze aufgeteilt. In der UW-Kohorte betrug die kreuzvalidierte Genauigkeit beim Training 82,1% und in der unabhängigen Validierungskohorte 86,6%, trotz eines medianen ctDNA-Anteils von nur 0,06, wie das Team hervorhebt. Um zu beurteilen, wie dieser Ansatz bei sehr geringen ctDNA-Fraktionen funktioniert, wurden in der GRAIL-Kohorte Training und unabhängige Validierung basierend auf der ctDNA-Fraktion aufgeteilt. Die kreuzvalidierte Genauigkeit beim Training betrug 80,6% und die Genauigkeit in der unabhängigen Validierungskohorte 76,3%. In der Validierungskohorte, in der die ctDNA-Fraktionen alle <0,05 waren und bis zu 0,0003 reichten, lag die AUC für Krebs vs. kein Krebs bei 0,99. (sf)
Mehr erfahren zu: "Genetischer Risikofaktor und Virusinfektion tragen gemeinsam zur Multiplen Sklerose bei" Genetischer Risikofaktor und Virusinfektion tragen gemeinsam zur Multiplen Sklerose bei Multiple Sklerose wird durch eine Infektion mit dem Epstein-Barr-Virus mitverursacht. Daneben spielen aber auch bestimmte Genvarianten eine wichtige Rolle. Wie Forschende der Universität Zürich zeigen, führt erst das molekulare Zusammenspiel […]
Mehr erfahren zu: "2000 Jahre alte Herpesviren im menschlichen Genom" 2000 Jahre alte Herpesviren im menschlichen Genom Eine neue Studie bestätigt, dass bestimmte humane Herpesviren bereits vor tausenden Jahren Teil des menschlichen Genoms wurden. Die aktuellen Genomdaten liefern den ersten direkten Beweis für die Entwicklung der Viren […]
Mehr erfahren zu: "Darmpolypen: DNA-Tests verbessern den Einblick in erbliche Risiken" Darmpolypen: DNA-Tests verbessern den Einblick in erbliche Risiken Bei fünf bis zehn Prozent der Darmkrebspatienten spielen erbliche Faktoren eine Rolle. Dabei ist der Anteil bei jüngeren Personen höher. Die DNA-Analyse von Darmpolypen liefert wichtige zusätzliche Informationen über die […]