Biophysik: Testen, wie gut die Biomarker funktionieren14. Mai 2024 Bild: © Narupon Promvichai – pixabay.com Forschende der Ludwig-Maximilians-Universität (LMU) München haben eine Methode entwickelt, um bestimmen zu können, wie zuverlässig sich die Zielproteine in der superauflösenden Fluoreszenz-Mikroskopie markieren lassen. „Inzwischen können wir die Anordnung und Interaktion einzelner Proteine unter dem Mikroskop beobachten“, sagt Prof. Ralf Jungmann, Leiter des Lehrstuhls für Molekulare Physik des Lebens an der LMU und Max-Planck-Fellow am MPI für Biochemie. Das Team des Biophysikers hat kürzlich die revolutionäre Methode RESI entwickelt – „Resolution Enhancement by Sequential Imaging“. Mit ihr lässt sich die Auflösung der Fluoreszenzmikroskopie bis auf die Ångströmskala verbessern – weit unterhalb der klassischen Beugungsgrenze des Lichts. Ausschlaggebend dafür sind DNA-konjugierte Markermoleküle, welche die Forschenden zielgenau an den Molekülen anbringen, die sie besser verstehen wollen. Nun hat Jungmanns Team im Fachmagazin Nature Methods eine Technik vorgestellt, mit der sich quantifizieren lässt, wie gut die Bindung von Biomarkermolekülen an die Zielproteine funktioniert. „Das ist absolut ausschlaggebend, wenn man quantitativ belastbare Aussagen treffen will“, erklärt der Physiker. Kenne man die Markierungseffizienz, so könne man auf diese Weise räumlich aufgelöste Proteomik betreiben. So finde man nicht nur heraus, was einzelne Proteine in einer Zelle machen, sondern auch in welchem Ausmaß sie vorhanden sind und wie sich ihre Menge und ihr Verhalten unter bestimmten Umständen verändern. „Das geht aber eben nur, wenn wir einschätzen können, wie gut die Markierung geklappt hat.“ Denn nur markierte Proteine blinken unter dem Mikroskop auf und werden so sichtbar. Zuverlässig und vielseitig einsetzbar Die von Jungmanns Team entwickelte Methode ermöglicht diese Einschätzung, indem sie die Zielproteine zusätzlich mit einem Referenzbiomarker versieht. Er „leuchtet“ beim Mikroskopieren in einer anderen Farbe, sodass erfolgreich markierte Proteine zweifarbig erscheinen. Jungmanns Team hat das unter anderem anhand des Membranproteins CD86 demonstriert: Die Referenz erzeugt eine rosafarbene Fluoreszenz, der eigentliche Marker eine bläuliche. So entsteht ein Muster unzähliger pinker und blauer Lichtpunkte. Wo die Markierung nicht geklappt hat leuchtet lediglich die Referenz einzeln auf. Aus dem Verhältnis doppelt und einzeln leuchtender Moleküle errechnet sich die Markierungseffizienz. Das Verfahren bietet mehrere Vorteile im Vergleich zu bisherigen Methoden zur Bestimmung der Bindeeffizienz: „Es funktioniert nicht nur in vitro, sondern auch in vivo, also im Kontext intakter Zellen“, erklärt Jungmann. „Die Technik ist außerdem auf eine Vielzahl verschiedener Zielmoleküle, Biomarker und Proben anwendbar und kompatibel mit einer ganzen Reihe superauflösender Methoden.“ Eine zuverlässige und breit einsetzbare Möglichkeit zur Einschätzung der Marker-Effizienz sei von entscheidender Bedeutung, um eine präzise Datenauswertung zu gewährleisten und zuverlässige Vergleiche zwischen verschiedenen Bindern, Markierungsbedingungen und Forschungslabors zu ermöglichen. Die Autorinnen und Autoren der Studie sind sich sicher, dass mit der neuen Quantifizierungsmethode nun der Weg geebnet ist, das Potenzial ihrer superauflösenden Mikroskopie deutlich zu erweitern: „Jetzt können wir auch konkrete biomedizinische Anwendungen ins Auge fassen, bei denen eine quantitative Erfassung der Proteine und Prozesse von großer Bedeutung ist“, meint Jungmann. Dazu gehört zum Beispiel die Krebsforschung, wo Informationen über Interaktionen zwischen z.B. Proteinen auf der Zelloberfläche und Medikamenten mit molekularer Auflösung bei der Entwicklung neuartiger Medikamente essenziell sind.
Mehr erfahren zu: "Wirksamkeit gängiger Anti-Phishing-Maßnahmen fraglich" Wirksamkeit gängiger Anti-Phishing-Maßnahmen fraglich Nach einer groß angelegten Phishing-Simulation in einer deutschen Universitätsklinik kommt das Forscherteam zum Schluss, dass weiterhin eine erhebliche Bedrohungslage für die Cybersicherheit in Krankenhäusern besteht.
Mehr erfahren zu: "Malaria-Parasiten bewegen sich auf rechtshändigen Spiralen" Malaria-Parasiten bewegen sich auf rechtshändigen Spiralen Plasmodien bewegen sich spiralförmig im Gewebe fort. Laut einer Studie der Universität Heidelberg beeinflusst der besondere Körperbau der Parasiten diese Fortbewegung – und ermöglicht ihm so den Wechsel zwischen Gewebekompartimenten.
Mehr erfahren zu: "ALM plädiert für praxisnahe Reform des MT-Berufegesetzes" ALM plädiert für praxisnahe Reform des MT-Berufegesetzes Mit einem Positionspapier zum Gesetz über die Berufe in der Medizinischen Technologie (MTBG) eröffnen die Akkreditierten Labore in der Medizin (ALM) eine politische Diskussion über die Zukunft der Ausbildung im […]