Crispr-Methode revolutioniert22. August 2019 Gene und Proteine in Zellen wechselwirken auf vielfältige Weise miteinander. Mit der neuen Methode lassen sich erstmals ganze Ge ETH Zürich / Carlo Cosimo Campa Forschende der ETH Zürich entwickelten die bekannte Crispr/Cas-Methode weiter. Es ist nun erstmals möglich, Dutzende, wenn nicht Hunderte von Genen in einer Zelle gleichzeitig zu verändern. Crispr/Cas ist in aller Munde. Mit dieser biotechnologischen Methode lassen sich in Zellen verhältnismässig einfach und schnell einzelne Gene präzise entfernen, ersetzen oder verändern. Darüber hinaus können Forschende seit wenigen Jahren mit auf Crispr/Cas basierenden Technologien auch die Aktivität einzelner Gene gezielt erhöhen oder reduzieren. Die entsprechenden Methoden haben sich innert kürzester Zeit sowohl in der biologischen Grundlagenforschung als auch in angewandten Bereichen wie der Pflanzenzüchtung weltweit durchgesetzt. Bisher konnten Forschende mit der Methode meistens nur ein Gen auf einmal verändern, in seltenen Fällen gelang es auch gleichzeitig zwei, drei oder in einem Einzelfall sieben Gene simultan zu verändern. Randall Platt, Professor am Departement für Biosysteme der ETH Zürich in Basel, und sein Team haben nun jedoch einen Ansatz entwickelt, mit dem sich – wie sie in Experimenten zeigten – gleich 25 Stellen innerhalb des Genoms einer Zelle gleichzeitig verändern lassen. Und damit nicht genug. Diese Zahl lasse sich noch weiter steigern, auf Dutzende bis sogar Hunderte von Genen, sagt Platt. Jedenfalls habe die Methode ein riesiges Potenzial für die biomedizinische Forschung und die Biotechnologie. „Dank diesem neuen Werkzeug können wir und andere Wissenschaftler nun umsetzen, wovon wir früher nur träumten.” Zellen gezielt und massiv umprogrammieren Gene und Proteine wechselwirken auf vielfältige Weise miteinander und bilden Netzwerke. Solche Netzwerke von Dutzenden von Genen ermöglichen die zelluläre Vielfalt in einem Organismus. Sie sind zum Beispiel verantwortlich für die Differenzierung von Vorläuferzellen in Nerven- oder Immunzellen. „Mit unserer Methode können wir erstmals ganze Gennetzwerke in einem Schritt gezielt verändern”, sagt Platt. Zudem ist es möglich, damit Zellen auf komplexe Weise und in massivem Umfang zu programmieren: Man kann damit die Aktivität von bestimmten Genen erhöhen und jene von anderen Genen reduzieren. Auch der Zeitpunkt einer solchen Aktivitätsänderung lässt sich genau steuern. Interessant ist das beispielsweise in der Grundlagenforschung, um zu ergründen, warum sich verschiedene Zelltypen unterschiedlich verhalten, oder um komplexe genetische Erkrankungen zu erforschen. Ebenso für die Zellersatztherapie, bei der geschädigte mit gesunden Zellen ersetzt werden. Hierbei können Forschende die Methode verwenden, um Stammzellen in ausdifferenzierte Zellen wie Nervenzellen oder insulinproduzierende Betazellen zu verwandeln, oder umgekehrt, um aus ausdifferenzierten Hautzellen Stammzellen herzustellen. Cas-Enzym mit doppelter Funktion Für die Crispr/Cas-Methode sind ein Enzym namens Cas und ein kleines RNA-Molekül nötig. Dessen Abfolge an RNA-Bausteinen dient als «Adressetikette», um das Enzym punktgenau an seinen vorgesehenen Wirkungsort auf den Chromosomen zu lenken. Die ETH-Wissenschaftler haben ein Plasmid geschaffen (ein ringförmiges DNA-Molekül), auf dem die Bauinformation des Cas-Enzyms liegt sowie – aneinandergereiht – die Bauinformationen einer Vielzahl von RNA-Adressmolekülen, also quasi eine längere Adressliste. In ihren Experimenten führten die Forschenden dieses Plasmid in menschliche Zellen ein und zeigten damit, dass sich so gleich mehrere Gene verändern und regulieren lassen. Für die neue Technik verwendeten die Wissenschaftler nicht das Enzym Cas9, das bei bisherigen Crispr/Cas-Methoden meist zum Einsatz kommt, sondern das verwandte Enzym Cas12a. Letzteres kann nicht nur Gene verändern, sondern gleichzeitig aus der langen «RNA-Adressliste» einzelne «Adressetiketten» zuschneiden. Ausserdem kommt Cas12a mit kürzeren RNA-Adressmolekülen aus als Cas9. „Und je kürzer diese adressierenden Sequenzen sind, desto mehr davon kann man auf ein Plasmid packen”, sagt Platt.
Mehr erfahren zu: "Virtuelle Histologie: Vom Gewebeschnitt zum 3D-Bild" Virtuelle Histologie: Vom Gewebeschnitt zum 3D-Bild Die virtuelle Histologie nutzt Röntgenstrahlung, um Gewebe dreidimensional abzubilden. Ein neues Verfahren ermöglicht nun auch die farbige Markierung von Strukturen im 3D-Bild. Damit eröffnen sich neue Möglichkeiten für Krebsforschung und […]
Mehr erfahren zu: "Knowledge Connector: Bessere klinische Entscheidungen in der molekularen Präzisionsonkologie" Knowledge Connector: Bessere klinische Entscheidungen in der molekularen Präzisionsonkologie Forschende am Nationalen Centrum für Tumorerkrankungen (NCT) Heidelberg und am Deutschen Krebsforschungszentrum (DKFZ) haben mit dem Knowledge Connector ein digitales Werkzeug entwickelt, das klinische Entscheidungen in der molekularen Präzisionsonkologie erheblich […]
Mehr erfahren zu: "USA nicht mehr in der WHO: Weniger Geld, fehlende Expertise" USA nicht mehr in der WHO: Weniger Geld, fehlende Expertise Für den Chef der Weltgesundheitsorganisation gibt es durch den US-Austritt nur Verlierer. Was den USA und dem Rest der Welt abhandenkommt.