Die nächste Generation von RNA-Chips13. August 2024 Ein hochdichter RNA-Mikrochip in Originalgröße hat etwa die Größe eines Fingernagels und kann bis zu 780.000 einzigartige RNA-Sequenzen enthalten, die jeweils eine Fläche von etwa 14 x 14 μm² einnehmen. (Bild: © Tadika Kekić) Forschungsteam erzielt Durchbruch: Die chemische Synthese von RNA-Mikroarrays mit hoher Dichte ist nun schneller und effizienter möglich. Einem internationalen Forschungsteam unter der Leitung der Universität Wien ist es gelungen, eine neue Version von RNA-Bausteinen mit höherer chemischer Reaktivität und Lichtempfindlichkeit zu entwickeln. Damit kann die Herstellungszeit von RNA-Chips, die in der biotechnologischen und medizinischen Forschung eingesetzt werden, deutlich verkürzt werden. Die chemische Herstellung dieser Chips ist nun doppelt so schnell und siebenmal so effizient möglich. Die Ergebnisse der Forschungsarbeit wurden kürzlich in der renommierten Fachzeitschrift Science Advances veröffentlicht. Das Aufkommen und die Marktzulassung von RNA-basierten Medizinprodukten, wie z.B. mRNA-Impfstoffen während der COVID-19-Pandemie, hat das RNA-Molekül auch in den Blickpunkt der Öffentlichkeit gerückt. Vor etwa 40 Jahren wurde eine Methode zur chemischen Synthese von DNA und RNA entwickelt, bei der mit Hilfe der Phosphoramidit-Chemie aus DNA- bzw. RNA-Bausteinen beliebige Sequenzen zusammengesetzt werden können. Der Aufbau einer Nukleinsäurekette erfolgt Schritt für Schritt mittels dieser speziellen chemischen Bausteine (Phosphoramidite). Jeder Baustein trägt chemische „Schutzgruppen“, die unerwünschte Reaktionen verhindern und die Bildung einer natürlichen Verbindung in der Nukleinsäurekette gewährleisten. Herausforderungen meistern Diese chemische Methode wird auch bei der Herstellung von Mikrochips („Mikroarrays”) angewandt, bei denen Millionen einzigartiger Sequenzen gleichzeitig auf einer festen Oberfläche von der Größe eines Fingernagels synthetisiert und analysiert werden können. Während DNA-Mikroarrays bereits weit verbreitet sind, hat sich die Anpassung der Technologie an RNA-Mikroarrays aufgrund der geringeren Stabilität von RNA als schwierig erwiesen. Bereits 2018 wurde an der Universität Wien gezeigt, wie RNA-Chips mit hoher Dichte durch Fotolithografie hergestellt werden können: Durch die exakte Positionierung eines Lichtstrahls können Bereiche auf der Oberfläche durch eine photochemische Reaktion für die Anlagerung des nächsten Bausteins vorbereitet werden. Dieser erste Bericht war zwar eine Weltneuheit und bis heute unangefochten, die Methode litt aber unter der langen Herstellungszeit, der geringen Ausbeute und der geringen Stabilität. Jetzt wurde dieser Ansatz massiv verbessert. Entwicklung einer neuen Generation von RNA-Bausteinen Ein Team des Instituts für Anorganische Chemie der Universität Wien hat in Zusammenarbeit mit dem Max Mousseron Institut für Biomoleküle der Universität Montpellier (Frankreich) nun eine neue Version von RNA-Bausteinen mit höherer chemischer Reaktivität und Lichtempfindlichkeit entwickelt. Dieser Fortschritt verkürzt die Herstellungszeit von RNA-Chips erheblich und macht die Synthese doppelt so schnell und siebenmal effizienter. Die innovativen RNA-Chips sind geeignet, Millionen von RNA-Kandidaten nach wertvollen Sequenzen für ein breites Spektrum von Anwendungen zu durchsuchen. „Die Herstellung von RNA-Mikroarrays mit funktionalen RNA-Molekülen war mit unserem früheren Aufbau einfach unerreichbar. Mit dem verbesserten Verfahren unter Verwendung der Propionyloxymethyl (PrOM)-Gruppe als Schutzgruppe ist es nun möglich”, sagt Jory Lietard, Assistenzprofessor am Institut für Anorganische Chemie. Als direkte Anwendung dieser verbesserten RNA-Chips enthält die Publikation eine Studie über RNA-Aptamere, kleine Oligonukleotide, die spezifisch an ein Zielmolekül binden. Es wurden zwei „leuchtende” Aptamere ausgewählt, die bei der Bindung an einen Farbstoff Fluoreszenz erzeugen, und Tausende von Varianten dieser Aptamere wurden auf dem Chip synthetisiert. Ein einziges Bindungsexperiment reicht aus, um Daten über alle Varianten gleichzeitig zu erhalten, was den Weg für die Identifizierung verbesserter Aptamere mit besseren diagnostischen Eigenschaften ebnet. „Hochwertige RNA-Chips könnten in dem schnell wachsenden Bereich der nicht-invasiven molekularen Diagnostik besonders wertvoll sein. Neue und verbesserte RNA-Aptamere werden händeringend gesucht, z. B. solche, die Hormonspiegel in Echtzeit verfolgen oder andere biologische Marker direkt aus Schweiß oder Speichel überwachen können”, sagt Tadija Kekić, Doktorand in der Gruppe von Jory Lietard.
Mehr erfahren zu: "Plasma-p-tau217, NfL und GFAP zur Vorhersage kognitiver Beeinträchtigungen" Plasma-p-tau217, NfL und GFAP zur Vorhersage kognitiver Beeinträchtigungen Neue Forschung zeigt, dass kombinierte Blut-Biomarker früh Veränderungen in spezifischen kognitiven Bereichen bei gesunden Personen und Menschen mit leichten Beeinträchtigungen vorhersagen können.
Mehr erfahren zu: "Neues Forschungsprojekt: Bessere Statistik für kleine Stichproben" Neues Forschungsprojekt: Bessere Statistik für kleine Stichproben Kleine Stichproben: Wie lassen sich trotzdem valide wissenschaftliche Ergebnisse gewinnen? Dieser Frage widmet sich das neue Projekt von Prof. Markus Neuhäuser, Professor für Statistik am Campus Remagen der Hochschule Koblenz.
Mehr erfahren zu: "C-COMPASS: KI-basierte Software für “Spatial Omics”" C-COMPASS: KI-basierte Software für “Spatial Omics” Ein neues Tool vereinfacht die Anwendung räumlicher Proteomik und Lipidomik – ganz ohne Programmierkenntnisse. Durch den Wegfall technischer Hürden macht C-COMPASS „Spatial Omics“ somit einem breiteren Kreis von Forschenden zugänglich.