Flexibles Handeln durch Umprogrammieren von Hirnzellen23. September 2020 Lage des orbifrontalen Kortex bei Maus und Mensch (©Universität Zürich) Menschen wie Tiere haben die Fähigkeit, sich immer wieder auf neue Situationen einzustellen. Das Institut für Hirnforschung der Universität Zürich zeigt nun im Mausmodell, welche Nervenzellen im Gehirn hierbei das Kommando haben. Die Studie trägt so zum Verständnis von Entscheidungsprozessen bei gesunden und kranken Menschen bei. Kein Händeschütteln zur Begrüßung, nur mit Maske in den Zug, in die Armbeuge niesen – die Covid-19-Pandemie zeigt, wie wichtig es für Menschen manchmal ist, gewohnte Verhaltensweisen abzulegen und neue zu erlernen. Und auch Tiere müssen in der Lage sein, sich schnell an veränderte Umweltbedingungen anzupassen. “Die Grundlage für diese Fähigkeit ist die Plastizität des Gehirns”, sagte Fritjof Helmchen, Co-Direktor am Institut für Hirnforschung der Universität Zürich und Leiter des Zentrums für Neurowissenschaften Zürich. “Doch die biologischen Prozesse, die diese erstaunlichen Leistungen ermöglichen, sind noch sehr unvollständig verstanden.” Seinem Team ist nun ein erster Schritt zur Aufklärung gelungen: Es zeigt, dass ein Teil der Großhirnrinde – der hinter den Augen gelegene sogenannte orbitofrontale Kortex – die Nervenzellen in untergeordneten sensorischen Arealen umprogrammieren kann. Hirnzellen beim Umlernen beobachten Für ihre Versuche simulierten die Forscher in Mäusen einen Prozess des Umlernens unter kontrollierten Bedingungen und untersuchten auf Ebene einzelner Nervenzellen, was dabei im Gehirn passiert. Zunächst trainierten sie die Tiere darin, nach einer Berührung der Tasthaare mit grobkörnigem Sandpapier zu schlecken – was zu einer Belohnung mit Zuckerwasser führte. Bei Berührung mit feinkörnigem Sandpapier hingegen durften sie nicht schlecken, sonst löste dies ein unangenehmes Geräusch aus. Hatten die Mäuse dies verstanden, so wurde der Spieß umgedreht: Nun gab es die Belohnung bei feinkörnigem und nicht bei grobkörnigem Sandpapier. Dieses neue, gegenteilige Verhaltensmuster erlernten die Mäuse nach nur kurzer Übung. Höhere Instanz polt Zellen um Während dieses Trainings analysierten die Neurowissenschaftler mithilfe von molekularbiologischen und bildgebenden Techniken die Funktion einzelner Nervenzellen in den beteiligten Hirnarealen. Es zeigte sich, dass eine Gruppe von Hirnzellen des orbitofrontalen Kortex während des Umlernens besonders aktiv ist. Diese Zellen haben lange Fortsätze, die bis in das Areal der sensorischen Nervenzellen reichen, die bei Mäusen Tastreize verarbeiten. In diesem Areal folgten die Zellen zunächst dem alten Aktivitätsmuster, ein Teil passte sich dann allerdings der neuen Situation an. Wurden die betreffenden Hirnzellen des orbitofrontalen Kortex gezielt ausgeschaltet, so funktionierte das Umlernen nicht und die Nervenzellen im sensorischen Areal zeigten keine Anpassung ihrer Aktivität. “Wir konnten also zeigen, dass eine direkte Verbindung vom orbitofrontalen Kortex zu sensorischen Hirnarealen besteht, und dass dort ein Teil der Nervenzellen umgepolt wird”, erklärte Helmchen. “Die Plastizität dieser Zellen und die Instruktion durch die höhere Instanz des orbitofrontalen Kortex scheinen für die Flexibilität unseres Verhaltens und die Möglichkeit, sich auf neue Situationen einzustellen, entscheidend zu sein.” Es ist schon länger bekannt, dass der orbitofrontale Kortex an Entscheidungsprozessen beteiligt ist. Er hat gewissermaßen die Aufsicht darüber, dass Reaktionen auf äußere Umstände angemessen und erfolgreich sind. “Die dieser Funktion zugrundeliegenden Nervenschaltkreise waren aber bis jetzt nicht bekannt”, sagt der Erstautor der Studie, Abhishek Banerjee, seit kurzem Professor an der Universität Newcastle. “Diese Art der Kommunikation und Kontrolle über verschiedene Hirnareale hinweg ist wirklich bemerkenswert.” Störungen besser verstehen Die Forscher gehen davon aus, dass sich die fundamentalen Prozesse, die sie in der Maus beobachtet haben, in ähnlicher Weise auch im menschlichen Gehirn abspielen. “Dieses vertiefte Wissen über die komplizierten Vorgänge im Gehirn bei Entscheidungsprozessen kann wichtig sein”, sagte Helmchen. “Unsere Forschungsergebnisse tragen etwa zum besseren Verständnis von Hirnkrankheiten bei, bei denen diese Flexibilität gestört ist, wie beispielsweise bei Formen von Autismus und Schizophrenie.” Denn für Menschen, die ihr Verhalten sehr schwer oder gar nicht anpassen können, sei dies tatsächlich ein großes Problem. Originalpublikation: Banerjee A et al.: Value-guided remapping of sensory cortex by lateral orbitofrontal cortex. Nature 2020;585(7824):245–250.
Mehr erfahren zu: "Alzheimer-Medikament zeigt Wirkung gegen Sichelzellanämie" Weiterlesen nach Anmeldung Alzheimer-Medikament zeigt Wirkung gegen Sichelzellanämie Ein seit Langem zugelassenes, kostengünstiges Alzheimer-Medikament könnte künftig auch Patienten mit Sichelzellanämie helfen. Erste klinische Daten einer internationalen Forschungsgruppe unter der Leitung der Universität Zürich (UZH) zeigen, dass der Wirkstoff […]
Mehr erfahren zu: "Kasse: Krankheitsausfälle im Job auch 2025 auf hohem Niveau" Kasse: Krankheitsausfälle im Job auch 2025 auf hohem Niveau Erkältungen, psychische Probleme, Rückenschmerzen: Fehlzeiten von Beschäftigten wegen Krankheit halten sich hartnäckig, wie neue Daten zeigen. Politiker stellen Regelungen wie die telefonische Krankschreibung infrage. Auch neue Modelle werden diktutiert.
Mehr erfahren zu: "Merz kritisiert hohen Krankenstand – Liegt es an telefonischer Krankschreibung?" Merz kritisiert hohen Krankenstand – Liegt es an telefonischer Krankschreibung? Bundeskanzler Friedrich Merz (CDU) hat angesichts aktueller Zahlen zu viele Fehltage wegen Krankheit kritisiert. Seine Partei stellt insbesondere die Möglichkeit zur telefonischen Krankschreibung, die während der Corona-Pandemie eingeführt wurde, infrage.