Gegenwehr von Monozyten: Neuer Mechanismus zur Abwehr von SARS-CoV-2 entdeckt11. Februar 2025 Darstellung von SARS-CoV-2. (Abbildung: © Fotosphaere/stock.adobe.com) Ein Forschungsteam der Medizinischen Universität (MedUni) Wien (Österreich) hat einen bisher unbekannten Mechanismus entdeckt, der es Monozyten ermöglicht, SARS-COV-2 zu bekämpfen. Die eröffnet neue Möglichkeiten für die Therapie insbesondere bei schweren COVID-19-Verläufen. Der bislang bekannte Weg der Infektion durch SARS-CoV-2 führt über einen bestimmten Rezeptor von Zellen (ACE2), an den das prägnant ausgebildete Spike-Protein des Virus bindet. Als Spezialeinheit des Immunsystems verfügen Monozyten nicht über ACE2-Rezeptoren. Wie sie trotzdem SARS-COV-2 erkennen und bekämpfen können, konnte sich die Wissenschaft bisher nicht erklären. Den dahinterliegenden Mechanismus hat das Forschungsteam unter der Leitung von Anna Ohradanova-Repic und Prof. Hannes Stockinger vom Zentrum für Pathophysiologie, Infektiologie und Immunologie der MedUni Wien nun erstmals beschrieben. Alternative Eintrittspforte Wie die Studie zeigt, „entführt“ SARS-CoV-2 bestimmte im Körper allgegenwärtige Proteine (Cyclophilin A und B), um an einen Rezeptor auf der Oberfläche von Monozyten (CD147) zu binden. „Diesen alternativen Weg der Infektion nützen Coronaviren wahrscheinlich auch bei anderen Zellen, denen ACE2 fehlt“, erklärt Studienleiterin Ohradanova-Repic. Da die auf diesem Infektionsweg genützten Zellbestandteile praktisch überall im Körper vorkommen, erweitert diese alternative Eintrittspforte die Reichweite des Virus – ein möglicher Grund, warum COVID-19 so unterschiedliche Bereiche des Organismus betreffen kann. „Zudem kann der von uns entdeckte Eintrittsmechanismus von SARS-CoV-2 auch die Viruslast in infizierten Zellen erhöhen und den Krankheitsverlauf verschlechtern“, ergänzt Co-Studienleiter Stockinger. Gegenschlag der Monozyten Trotz Infektion mit SARS-CoV-2 – so das zentrale Ergebnis der Forschung – lassen sich Monozyten von SARS-CoV-2 nicht ausmanövrieren und setzen zum Gegenschlag an. Dabei nützen sie eben jenen neu entdeckten Mechanismus (Cyclophilin-CD147-Achse), um das Virus abzutöten und zu erkennen. So wird eine Entzündungsreaktion ausgelöst, die das Immunsystem aktiviert und die Abwehr durch weitere Immunzellen verstärkt. Eine zu starke Aktivierung dieses Mechanismus könnte das überschießende Entzündungsgeschehen erklären, das bei schweren COVID-19-Verläufen beobachtet wird und zu Gewebeschäden und Organversagen führen kann. „Somit liefern unsere Ergebnisse wertvolle Hinweise darauf, wie die Immunantwort gezielt moduliert werden könnte, um Patient:innen mit schwerem COVID-19 gezielt zu behandeln“, sagt Ohradanova-Repic. Weitere Studien sollen die Erkenntnisse vertiefen.
Mehr erfahren zu: "Virtuelle Histologie: Vom Gewebeschnitt zum 3D-Bild" Virtuelle Histologie: Vom Gewebeschnitt zum 3D-Bild Die virtuelle Histologie nutzt Röntgenstrahlung, um Gewebe dreidimensional abzubilden. Ein neues Verfahren ermöglicht nun auch die farbige Markierung von Strukturen im 3D-Bild. Damit eröffnen sich neue Möglichkeiten für Krebsforschung und […]
Mehr erfahren zu: "RegioOnkoNet: FZI überführt digitale Onkologie-Lösungen in die Versorgung auf dem Land" RegioOnkoNet: FZI überführt digitale Onkologie-Lösungen in die Versorgung auf dem Land Im Forschungsprojekt RegioOnkoNet schaffen die Verbundpartner eine sichere digitale Infrastruktur, die Fachärzte, Hausärzte und Krebspatienten in der Modellregion Karlsruhe–Freiburg standortunabhängig vernetzt.
Mehr erfahren zu: "Knowledge Connector: Bessere klinische Entscheidungen in der molekularen Präzisionsonkologie" Knowledge Connector: Bessere klinische Entscheidungen in der molekularen Präzisionsonkologie Forschende am Nationalen Centrum für Tumorerkrankungen (NCT) Heidelberg und am Deutschen Krebsforschungszentrum (DKFZ) haben mit dem Knowledge Connector ein digitales Werkzeug entwickelt, das klinische Entscheidungen in der molekularen Präzisionsonkologie erheblich […]