Hemmende Signale in Neuronen des Sehsystems schützen vor Reizüberflutung

Zebrafischlarven mit (l.) und ohne (r.) grün fluoreszierendes Protein in denjenigen Bereichen des Tectums, die visuelle Informationen verarbeiten. Foto: © Johann Bollmann

Freiburger Neurowissenschaftler haben in Zebrafischlarven Signale in einer Hirnregion, in der Sehinformationen verarbeitet werden, identifizieren können, die die Aktivität von Nervenzellen während der Eigenbewegung hemmen. Mechanismen dieser Art könnten erklären, warum die Sehumgebung trotz eigener Augen- und Körperbewegung stabil wahrgenommen wird.

Wenn die Augen von einem Punkt zum anderen springen, gleitet das Bild der Umgebung in kürzester Zeit über die Netzhaut des Auges und löst eine Welle neuronaler Aktivität aus. Um von diesen Sinneseindrücken, die durch eigene Bewegungen hervorgerufen werden, nicht überfordert zu sein, unterdrückt das Gehirn währenddessen die Reiz-Verarbeitung. Forschende um den Freiburger Neurowissenschaftler Prof. Johann Bollmann haben jetzt in Zebrafischlarven zum ersten Mal auf zellulärer Ebene die Signale gemessen, die diese Unterdrückung bewirken. Ihre Ergebnisse wurden im Fachjournal “Nature Communications” veröffentlicht.

Statt mit einer gleichmäßigen Geschwindigkeit bewegen sich Zebrafischlarven sprunghaft vorwärts. In diesen kurzen Bewegungsphasen filtert auch ihr Gehirn visuelle Eindrücke heraus, die nicht wahrgenommen werden. Die Forschenden verifizierten das, indem sie die Aktivität von Neuronen im „Dach“ des Mittelhirns, dem Tectum, aufzeichneten. Das Tectum ist die Region des Gehirns, in dem die Fische verarbeiten, was sie sehen. Während sich die Fischlarven fortbewegen, senden einige dieser Neuronen weniger Signale aus. Die Wissenschaftler konnten mit Messungen des elektrischen Einstroms in einzelnen Nervenzellen zeigen, dass dieser reduzierten Aktivität kurze Impulse aus unterdrückenden Synapsen vorausgehen. Diese hemmenden Impulse verändern für kurze Zeit die elektrischen Eigenschaften der Zellhülle. Sodass die Zelle weniger empfindlich auf die gleichzeitig eintreffenden, erregenden Signale aus der Netzhaut reagiert und dadurch auch selbst weniger Signale aussendet.

Genaue Herkunft der hemmenden Signale noch unklar

Um herauszufinden, woher die inhibitorischen Signale stammen, betrachteten die Forschenden zusätzlich die lokale neuronale Aktivität in einem Querschnitt des Tectums. Dafür nutzten sie Zebrafischlarven, deren Neuronen einen genetisch kodierten, kalzium-empfindlichen Fluoreszenzfarbstoff enthalten. Sie leuchten daher bei erhöhten Konzentrationen von Kalzium-Kationen (Ca2+) im Fluoreszenzmikroskop auf. Eine solche erhöhte Ca2+-Konzentration tritt immer dann auf, wenn über Synapsen Informationen von Neuron zu Neuron übertragen werden. Treten solche Fluoreszenzsignale kurz vor der Schwimmbewegung auf, handelt es sich höchstwahrscheinlich um erregende Synapsen, die jene Neuronen anregen, die die Bewegung steuern. Erscheinen diese Fluoreszenzsignale dagegen erst, nachdem die Larve zu schwimmen begonnen hat, handelt es sich eher um solche Synapsen, die hemmende Wirkung auf die Steuerungsneurone ausüben. Die Aufzeichnungen im Querschnitt zeigen, dass fast ausschließlich in den oberen Schichten des Tectums unterdrückende Signale gesendet werden. In diesen Schichten finden sich vor allem Ausläufer von Nervenzellen aus einer Nachbarregion des Tectums, die unter anderem Signale aus Bereichen des Kleinhirns empfängt. Darum untersuchten die Wissenschaftler zusätzlich die Aktivität der Zellen in dieser benachbarten Region. Auch dort fanden sie vermehrt Ca2+-Konzentrationsanstiege kurz nach schnellen Schwimmbewegungen. Dies ist zwar noch kein eindeutiger Nachweis, dass die unterdrückenden Signale von dort stammen. Doch die Messungen liefern Anknüpfungspunkte für zukünftige Forschung.

Erkenntnisse lassen sich teilweise auf Prozesse im menschlichen Gehirn übertragen

Zebrafischlarven sind ein weit verbreitetes Modellsystem in der Entwicklungs- und Neurobiologie, da sie nur wenige Millimeter groß und transparent sind. Zudem kann die Aktivität in ihren Neuronen prinzipiell in allen Bereichen des Gehirns hochaufgelöst gemessen werden kann. Ihre Gehirne weisen eine vergleichsweise geringe Komplexität auf: ähnlich dem Gehirn von Taufliegen besitzen Zebrafischlarven nur 100.000-200.000 Neuronen. Dabei entspricht der Bauplan ihres Nervensystems demjenigen anderer Wirbeltiere. So können hier grundlegende Gehirnfunktionen in einem einfachen Modellsystem untersucht werden. Die Neurowissenschaftler gehen darum davon aus, dass sich ihre Erkenntnisse teilweise auf Prozesse im menschlichen Gehirn übertragen lassen. „Mit unseren Messungen machen wir zum ersten Mal Signale auf der Zellebene sichtbar, die vor einer Reizüberflutung durch schnelle Bewegung schützen“, erklärt Bollmann. „Das ist ein wichtiger Schritt, um in Zukunft besser zu verstehen, wie genau das Gehirn zwischen Reizen durch eigene Bewegungen und solchen von außen unterscheidet. Derartige Mechanismen, mit denen das Gehirn eigene Handlungen bei der Verarbeitung äußerer Sinneseindrücke mit einbezieht, spielen vermutlich eine zentrale Rolle auch bei der Bildung komplexer interner Modelle unserer Umwelt im Gehirn.“

Teilen:
Quellen Ali MA, Lischka K, Preuss SJ et al. A synaptic corollary discharge signal suppresses midbrain visual processing during saccade-like locomotion. Nature Communications (2023). DOI: 10.1038/s41467-023-43255-6Albert-Ludwigs-Universität Freiburg im Breisgau