Intrinsisch ungeordnete Proteine zuverlässig vermessen10. Januar 2025 Überprüfung eines intrinsisch ungeordneten Proteins (Re ist die Höhe, Rg ist die Gesamtgröße). Abb.: © Miao Yu Mit einem neuen Ansatz der JGU und des EMBL Hamburg lässt sich die Form eines ungeordneten Proteins an derselben Probe auf zwei verschiedene Arten bestimmen. Proteine sind elementar für unsere Körperfunktionen: Tausende verschiedene Proteine übernehmen ganz unterschiedliche Aufgaben. Während einige Komponenten unserer Körperzellen bilden, kurbeln andere als Enzyme elementare Stoffwechselprozesse an, dienen als Hormone oder helfen dem Immunsystem in Form von Antikörpern bei seiner Arbeit. Vereinfacht gesagt kann man sich Proteine als lange Ketten von Aminosäuren vorstellen, die sich zu verschiedenen dreidimensionalen Strukturen organisieren. So gibt es etwa die Alpha-Helix sowie das Beta-Faltblatt. Diese Strukturen beeinflussen, wie die Proteine mit anderen Proteinen interagieren und welche Funktionen sie übernehmen. Doch sind nicht alle Proteine derart geordnet: Etwa 30 Prozent liegen in einem ungeordneten Zustand vor. Schwer zu sagen, in welchem Maße sich diese Proteine zusammenknäueln oder wie sehr sie sich in der Umgebung – also in wässriger, zellähnlicher Lösung – ausstrecken. Doch ist dies elementar für ihr Verhalten: Je kleiner die Proteine sich zusammenziehen, wenn sie alleine in wässriger Lösung schwimmen, desto leichter bilden sie Klumpen, wenn mehrere Proteine vorhanden sind. Aggregation von Proteinen ist der erste Schritt zur Bildung von Plaques im Gehirn Die intrinsisch ungeordneten Proteine können vielfach Amyloid-Formationen annehmen. Verklumpen diese Proteine im Gehirn, entstehen Ablagerungen, auch Plaques genannt, die das Risiko für die Entwicklung von Alzheimer und anderen neurodegenerativen Erkrankungen erhöhen. Biophysiker interessieren sich daher sehr für die Größe von Proteinen in Lösung. „Das Potenzial einer neurodegenerativen Krankheit liegt in diesem Ur-Parameter, schließlich lässt sich aus ihm das Aggregationspotenzial ablesen. Und die Aggregation ist ein essenzieller Schritt zur Bildung der Plaques“, sagt Prof. Dr. Edward A. Lemke vom Institut für Molekulare Physiologie der Johannes Gutenberg-Universität Mainz (JGU) und Adjunct Director am Institut für Molekulare Biologie (IMB). Die Krux: Es gibt zwei Methoden, diesen Ur-Parameter zu messen – doch kommen diese zu widersprüchlichen Ergebnissen. Über die Fluoreszenzmethode lässt sich die End-to-end-Distanz messen, also der Abstand von einem Ende der Proteinkette zum anderen. Die Röntgenkleinwinkelstreuung dagegen analysiert die Größe des Knäuels, Experten sprechen vom „Radius of Gyration“. „Zwar dienen beide Ergebnisse als Basis für Vorhersagen, dennoch ist dieser Ur-Parameter durch die Nichtvereinbarkeit der Messergebnisse Gegenstand der Diskussion“, erläutert Dr. Dmitri Svergun, ehemaliger Gruppenleiter des EMBL Hamburg. Neuer Streuungsansatz: Radius of Gyration und End-to-end-Distance an der gleichen Probe Dieses Dilemma konnten die Forschenden durch eine Kombination von Chemischer Biologie und Streumethoden lösen. Sie haben eine Markierungsmethode mit der Anomalen Streuung kombiniert, sodass man die Knäuelgröße ebenso messen kann wie die End-to-end-Distanz – und das an der gleichen Probe. „Auf diese Weise bekommen wir aus einer Untersuchungsmethode zwei Parameter und können analysieren, wie diese beiden Größen voneinander abhängen“, erklärt Lemke. Im Jahr 2017 konnten die Forschenden bereits beide Parameter messen, doch waren da noch zwei verschiedene Proben nötig. Nun haben sich die Parameter erstmalig auch am gleichen Sample messen lassen.
Mehr erfahren zu: "Vitamin-D-Spiegel während COVID-19-Pandemie gesunken" Vitamin-D-Spiegel während COVID-19-Pandemie gesunken Routinedaten aus Laboren offenbaren einen messbaren Rückgang der Vitamin-D-Spiegel während der COVID-19 Pandemie, vor allem bei älteren Frauen und bei Stadtbewohnern. Das hat eine Studie der Ludwig-Maximilian-Universität (LMU) München ergeben.
Mehr erfahren zu: "Leuchtende Sensoren für die personalisierte Medizin" Leuchtende Sensoren für die personalisierte Medizin Nanoröhren aus Kohlenstoff können den Nachweis von bestimmten Molekülen ermöglichen. Forschende der Ruhr-Universität Bochum zeigen den Nutzen der Sensoren am Beispiel von Dopamin und der Parkinson-Krankheit.
Mehr erfahren zu: "Visualisierung chemischer Signale auf Einzelzell-Ebene" Visualisierung chemischer Signale auf Einzelzell-Ebene Ein Forschungsteam der Universität Münster hat durch die Kombination von Fluoreszenzmikroskopie und Massenspektrometrie Stoffwechselunterschiede im Tumor sichtbar gemacht. Die neue Methode könnte vielseitig bereichern.