KI sagt Funktion von Enzymen voraus15. August 2023 Schematische Darstellung des Vorhersageprozesses für Wechselzahlen von enzymatischen Reaktionen. Ein Enzym besteht aus Sequenzen von Aminosäuren; diese Sequenzen werden in numerische Vektoren umgewandelt, dargestellt durch graue Quadrate, welche dann von einem Deep Learning-Modell in einen einzigen Vektor transformiert werden (oben links). Informationen über die katalysierten Reaktionen werden ebenfalls in numerische Vektoren umgewandelt (oben rechts). Experimentell bestimme Wechselzahlen (unten links) werden zum Training eines Gradient Boosting-Modells verwendet, um die Wechselzahl kcat vorherzusagen (unten rechts). Gradient Boosting-Modelle sind ein Ensemble mehrerer Entscheidungsbäume, dargestellt in unterschiedlichen Grüntönen. © HHU/Alexander Kroll In zellulären Stoffwechselprozessen spielen Enzyme eine entscheidende Rolle. Um diese Prozesse auch quantitativ einschätzen zu können, müssen Forschende die sogenannte „Wechselzahl“ (kurz kcat) der Enzyme kennen. In der Fachzeitschrift Nature Communications beschreibt ein Team von Bioinformatikern der Heinrich-Heine-Universität Düsseldorf (HHU) nun ein Verfahren, um diese Größe bei verschiedenen Enzymen mittels KI-Methoden vorherzusagen. Enzyme sind wichtige Biokatalysatoren in allen lebenden Zellen. Sie sind im Normalfall große Proteine, die kleinere Moleküle – sogenannte Substrate – an sich binden und diese anschließend in andere Moleküle umwandeln, die „Produkte“. Ohne die Enzyme könnte die Reaktion der Substrate in die Produkte nicht oder nur mit sehr kleiner Rate stattfinden. Die meisten Organismen besitzen Tausende verschiedene Enzyme. In vielen biotechnologischen Prozessen, aber auch im Alltag – von der Reifung von Brotteigen bis hin zu Waschmitteln – finden Enzyme vielfache Anwendungen. Die maximale Geschwindigkeit, mit der ein bestimmtes Enzym seine Substrate in Produkte umwandeln kann, wird durch die sogenannte Wechselzahl kcat (englisch „turnover number“) bestimmt. Sie ist ein wichtiger Parameter für die quantitative Erforschung von Enzymaktivitäten und spielt eine entscheidende Rolle für das Verständnis des zellulären Stoffwechsels. Allerdings ist es zeitaufwendig und teuer, die kcat-Werte experimentell zu bestimmen; daher sind ihre Werte für die allermeisten Reaktionen nicht bekannt. Die Arbeitsgruppe Computergestützte Zellbiologie an der HHU um Prof. Dr. Martin Lercher entwickelte nun ein neues Verfahren namens TurNuP, um kcat -Werte von Enzymen mithilfe von KI-Methoden vorherzusagen. Um ein kcat -Vorhersagemodell zu trainieren, wurden mithilfe von Deep Learning-Modellen Informationen über die Enzyme und die katalysierten Reaktionen in numerische Vektoren umgewandelt. Diese numerischen Vektoren dienten als Eingabe eines Machine Learning-Modells – eines sogenannten Gradient Boosting-Modells –, das die kcat -Werte vorhersagt. Erstautor Alexander Kroll: „TurNuP liefert bessere Ergebnisse als frühere Ansätze und kann sogar erfolgreich auf Enzyme angewendet werden, die nur eine geringe Ähnlichkeit zu den Enzymen im Trainingsdatensatz aufweisen.“ Mit bisherigen Modellen konnten keine sinnvollen Aussagen getroffen werden, wenn die Enzymsequenz nicht mindestens 40 Prozent mit denjenigen der Trainingsenzyme überstimmte. TurNuP dagegen macht schon bei solchen Enzymen sinnvolle Vorhersagen, bei denen die Übereinstimmung zwischen 0 und 40 Prozent liegt. Prof. Lercher ergänzt: „Wir zeigen in unserer Studie, dass die Vorhersagen durch TurNuP verwendet werden können, um die Konzentrationen von Enzymen in lebenden Zellen deutlich genauer als bisher vorherzusagen.“ Um das Vorhersagemodell möglichst vielen Anwendern leicht zugänglich zu machen, entwickelte das HHU-Team einen benutzerfreundlichen Webserver, mit dem andere Forschende kcat-Werte von Enzymen vorhersagen lassen können.
Mehr erfahren zu: "Genetischer Risikofaktor und Virusinfektion tragen gemeinsam zur Multiplen Sklerose bei" Genetischer Risikofaktor und Virusinfektion tragen gemeinsam zur Multiplen Sklerose bei Multiple Sklerose wird durch eine Infektion mit dem Epstein-Barr-Virus mitverursacht. Daneben spielen aber auch bestimmte Genvarianten eine wichtige Rolle. Wie Forschende der Universität Zürich zeigen, führt erst das molekulare Zusammenspiel […]
Mehr erfahren zu: "2000 Jahre alte Herpesviren im menschlichen Genom" 2000 Jahre alte Herpesviren im menschlichen Genom Eine neue Studie bestätigt, dass bestimmte humane Herpesviren bereits vor tausenden Jahren Teil des menschlichen Genoms wurden. Die aktuellen Genomdaten liefern den ersten direkten Beweis für die Entwicklung der Viren […]
Mehr erfahren zu: "Darmpolypen: DNA-Tests verbessern den Einblick in erbliche Risiken" Darmpolypen: DNA-Tests verbessern den Einblick in erbliche Risiken Bei fünf bis zehn Prozent der Darmkrebspatienten spielen erbliche Faktoren eine Rolle. Dabei ist der Anteil bei jüngeren Personen höher. Die DNA-Analyse von Darmpolypen liefert wichtige zusätzliche Informationen über die […]