KI verbessert Bildgebung im Gehirn11. Februar 2025 Quelle: © Gruen, Bauer, Rueber, Schultz / Lamarr Institut Wie lassen sich Nervenbahnen im Gehirn sichtbar machen, um komplexe Operationen besser zu planen? Ein Forschungsteam des Lamarr-Instituts und der Universität Bonn hat gemeinsam mit Kollegen der Neuroradiologie und Epileptologie des Universitätsklinikums Bonn (UKB) eine KI-gestützte Methode untersucht, die diese Rekonstruktionen präziser macht. Das Gehirn besteht aus einem hochkomplexen Netzwerk aus Nervenzellen, die über feinste Leitungsbahnen – sogenannte Trakte – miteinander verbunden sind. Um diese Strukturen sichtbar zu machen, nutzen Forschende die Traktographie, ein bildgebendes Verfahren, das aus speziellen MRT-Scans berechnet, wie die Nervenbahnen verlaufen. Diese Informationen sind besonders wichtig für die Planung von Gehirnoperationen, etwa bei Epilepsiepatienten, die sich einem chirurgischen Eingriff unterziehen müssen. Bisherige Traktographie-Methoden basieren auf mathematischen Modellen, die aus den MRT-Daten ableiten, wo sich Nervenbahnen befinden. Allerdings gibt es dabei oft Unsicherheiten – vor allem, wenn das Gehirn durch eine Krankheit oder eine Operation verändert wurde. Hier setzen moderne KI-Methoden an: Mit maschinellem Lernen kann das System Muster erkennen und auf dieser Basis genauere Rekonstruktionen erstellen. KI-gestützte Traktographie zeigt Potenzial – aber auch Herausforderungen In der aktuellen Studie testeten die Forschenden eine weit verbreitete KI-Methode namens TractSeg, die ursprünglich auf gesunden Gehirnen trainiert wurde. Das Team untersuchte, ob sie auch bei Epilepsiepatienten funktioniert, die sich einer Hemisphärotomie unterzogen haben. Die Ergebnisse zeigten, dass TractSeg in vielen Fällen gut generalisiert, aber auch unerwartete Fehler produziert: Es rekonstruierte fälschlicherweise Leitungsbahnen, die aufgrund der Operation gar nicht mehr existieren dürften – ein Phänomen, das als „Halluzination“ bezeichnet wird. Gleichzeitig blieben einige tatsächlich noch vorhandene Nervenbahnen unvollständig oder fehlten ganz in der Darstellung. Neuer Hybrid-Ansatz für präzisere Rekonstruktionen Um diese Probleme zu lösen, entwickelte das Team eine neue Hybrid-Methode, die die Vorteile von KI mit der Datentreue traditioneller Verfahren kombiniert. Dadurch stellt die Methode sicher, dass nur solche Nervenverbindungen rekonstruiert werden, die wirklich vorhanden sind. Das Ergebnis: keine Halluzinationen mehr, eine bessere Erfassung erhaltener Bahnen und insgesamt genauere Rekonstruktionen – auch bei gesunden Gehirnen. Prof. Thomas Schultz, Principal Investigator in den Life Sciences am Lamarr-Institut und Professor am Institut für Informatik der Universität Bonn, betont die Bedeutung dieser Arbeit: „Unsere Studie zeigt sowohl das Potenzial als auch die Grenzen KI-gestützter Traktographie im klinischen Einsatz. Die Kombination mit traditionellen Methoden bietet eine vielversprechende Lösung für präzisere Rekonstruktionen, insbesondere bei Daten von Patientenen mit pathologischen Veränderungen. Unser Ziel ist es, diese Ansätze weiterzuentwickeln, um sie langfristig für die Neurochirurgie nutzbar zu machen.“
Mehr erfahren zu: "Schlaf als Schlüssel zum Verständnis von ME/CFS" Schlaf als Schlüssel zum Verständnis von ME/CFS Forschende aus Mannheim untersuchen die Rolle schlafbezogener Biomarker bei der Entstehung der Myalgischen Enzephalomyelitis/Chronisches Fatigue Syndrom (ME/CFS). Ziel ist es, die Mechanismen und Ursachen der Erkrankung besser zu verstehen, um […]
Mehr erfahren zu: "LWL-Klinikum Marsberg eröffnet Tagesklinik für Kinder und Jugendliche" LWL-Klinikum Marsberg eröffnet Tagesklinik für Kinder und Jugendliche Eine neue Tagesklinik in den Räumlichkeiten des LWL-Klinikums Marsberg bietet zwölf Therapieplätze für Kinder und Jugendliche mit psychischen Erkrankungen im Alter von sechs bis 18 Jahren.
Mehr erfahren zu: "Magnetisches Jamming eröffnet neue Möglichkeiten für die Mikrorobotik" Magnetisches Jamming eröffnet neue Möglichkeiten für die Mikrorobotik Könnten winzige magnetische Objekte, die sich schnell zusammenballen und sofort wieder auseinanderfallen, eines Tages filigrane Eingriffe im menschlichen Körper durchführen? Eine neue Studie von Forschenden des Max-Planck-Instituts für Intelligente Systeme […]