Kleinhirn speichert Daten wie eine MP3-Musikdatei

Foto: ©vector_v – stock.adobe.com

Forscher der Universität Leipzig haben die Körnerzellen des Kleinhirns genauer unter die Lupe genommen und herausgefunden, dass diese Zellen nicht so homogen sind wie bislang angenommen, sondern systematische Unterschiede aufweisen. Das erlaubt den Körnerzellen, Informationen ähnlich wie MP3-Musikdateien zu speichern. 

Informationen von Sinnesorganen werden in Form von elektrischen Impulsen von Nervenzelle zu Nervenzelle weitergegeben. Diese Impulse haben sehr unterschiedliche Wiederholungsraten und können zwischen 1 und 1000 Mal pro Sekunde auftreten. Am Ende ihres Weges erreichen sie letztendlich die Körnerzellen im Kleinhirn, wo bestimmte Informationen gespeichert werden. Bisher gingen die Wissenschaftler davon aus, dass Körnerzellen eine einheitliche Population aus Nervenzellen darstellen, die mit diesen unterschiedlichen Signalen gleichermaßen umgeht.

Dr. Isabelle Straub vom Carl-Ludwig-Institut für Physiologie untersuchte die elektrischen Eigenschaften der Körnerzellen am Tiermodell der Maus. Sie entdeckte dabei, dass die Zellen über unterschiedliche Eigenschaften verfügen und so mehr Informationen abspeichern können. Körnerzellen können elektrische Impulse mit spezifischen Frequenzen erkennen und weiterleiten. „Die Körnerzellen funktionieren ähnlich wie ein Sieb. Sie filtern spezifische Informationen nach ihren Frequenzen aus“, erklärt Straub.

Die Fähigkeit, Signale anhand ihrer Wiederholungsrate zu zerlegen, ähnelt der Fourier-Transformation. Diese Transformation wird bei der digitalen Kompression von Musikdateien in MP3s verwendet. Das MP3-Verfahren ermöglicht Musik als stark reduzierte Datenmenge zu speichern. Und tatsächlich zeigen die Computersimulationen von Straub und Kollegen, dass Nervenzell-Netzwerke mit unterschiedlichen Körnerzellen eine erhöhte Speicherkapazität aufweisen.

Die aktuellen Forschungsergebnisse tragen in der Wissenschaft zum besseren Verständnis bei, wie unser Gehirn zeitliche Informationen verarbeitet und speichert. Die Wissenschaftler können in einem weiteren Schritt nun untersuchen, ob die Möglichkeit, ankommende elektrische Impulse nach Frequenzen aufzutrennen und damit die Speicherkapazität zu erhöhen, auch von anderen Hirnregionen angewendet werden kann.

Originalpublikation:
Straub I et al.: Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity .
eLife 2020;9:e51771.