Kombination von Assay und Ausleseeinheit: Multiplex-Analytik mit para-magnetischen Mikropartikeln8. November 2022 Mikroflusszelle mit integrierter Messoptik. (Foto: © Fraunhofer ILT, Aachen) Die COVID-19-Pandemie hat neben vielen Herausforderungen auch einen Innovationsschub in der Diagnostik mit sich gebracht. Ein Team des Fraunhofer-Institutes für Lasertechnik ILT in Aachen hat eine neue Ausleseeinheit für para-magnetische Partikel in einem Mikrofluidiksystem entwickelt. Die Besonderheit liegt dabei in der Art der Partikel: Es sind Mikropartikel verschiedener Größe und unterschiedlichen Fluoreszenzen, die nach Bedarf mit verschiedenen Fängermolekülen (Antigene oder Antikörper) „beladen“ werden, so dass bis zu 24 Analyte gleichzeitig erfasst werden können. Viele Fragen haben sich daraus ergeben: Wie können Tests in Zukunft schneller skaliert, wie können verschiedene Tests simultan durchgeführt werden? Gerade der letzten Frage haben sich die Experten des Fraunhofer ILT und der Institut Virion\Serion GmbH in einem gemeinsamen Projekt gestellt. Sie haben eine Kombination von Assay und Ausleseeinheit entwickelt, mit der sich in Zukunft eine Vielzahl von unterschiedlichen Tests simultan durchführen lässt. 24 Kanäle für die klinische Multiplexanalytik „Ein normales Durchflusszytometer ist auf Zellen ausgerichtet“ erklärt Dr. Georg Meineke vom Fraunhofer ILT. „Wir haben ein System zum Analysieren von Mikropartikeln entwickelt, die wir über drei Größen und verschiedene Fluoreszenzlevel in 24 verschiedenen Kanälen simultan erkennen können.“ Die verschiedenen Spezies dieser Teilchen können über Streulicht- und Fluoreszenzmessungen eindeutig identifiziert werden. Mikrofluidische Ausleseeinheit für die spätere klinische Multiplex-Analytik. (Foto: © Fraunhofer ILT, Aachen) Für die eigentliche Diagnostik kann jeder Partikeltyp mit einem spezifischen Fängermolekül versehen werden, das jeweils einen nachzuweisenden Analyten passgenau bindet. Der Nachweis der angebundenen Analytmoleküle erfolgt dann über einen fluoreszenten Sekundärmarker. So können in einem einzigen Prozessschritt viele verschiedene diagnostische Marker und im Falle eines Antikörpernachweises sogar bis zu drei Immunglobulinklassen gleichzeitig erfasst werden. Während sich der Projektpartner Institut Virion\Serion GmbH auf die Partikel und den passenden Assay fokussiert hat, haben die Forschenden des Fraunhofer ILT die entsprechende mikrofluidische Ausleseeinheit entwickelt. Es wurde auf eine kompakte Bauform und eine Echtzeitdatenverarbeitung getrimmt. Die Projektpartner haben ein Funktionsmuster für ein späteres In-vitro-Diagnostikum aufgebaut, das Partikelproben und deren angebundene Analyten automatisiert vermisst. Das spätere In-vitro Diagnostikum erlaubt aktuell die Erfassung von bis zu 24 verschiedenen individuellen Markern mit der zusätzlichen Möglichkeit bis zu drei verschiedenen Sekundärmarker parallel auszulesen. Die dafür entwickelte Elektronikplattform übernimmt die Steuerung des Messsystems in Echtzeit sowie die Erfassung der Messdaten. Sie ermöglicht die Integration in Automationslösungen, wie zum Beispiel einen Laborvollautomaten. Fraunhofer ILT auf der COMPAMED 2022 in Düsseldorf Wichtige Systemkomponenten werden vom 14. bis zum 17. November auf dem IVAM-Gemeinschaftsstand F19.5 in Halle 8a vorgestellt. Sowohl Dr. Thomas Schumacher von der Institut Virion\Serion GmbH (17. November, 10.20 Uhr) als auch Dr. Georg Meineke (17. November, 10.40 Uhr) vom Fraunhofer ILT werden auf dem IVAM COMPAMED HIGH-TECH Forum (Stand G40) jeweils Teile des Projektes vorstellen, ersterer sogar mit einem direkten Bezug zur Antigen- und Antikörper Detektion verschiedener eorgSARS-CoV-2 Marker.
Mehr erfahren zu: "Virtuelle Histologie: Vom Gewebeschnitt zum 3D-Bild" Virtuelle Histologie: Vom Gewebeschnitt zum 3D-Bild Die virtuelle Histologie nutzt Röntgenstrahlung, um Gewebe dreidimensional abzubilden. Ein neues Verfahren ermöglicht nun auch die farbige Markierung von Strukturen im 3D-Bild. Damit eröffnen sich neue Möglichkeiten für Krebsforschung und […]
Mehr erfahren zu: "Knowledge Connector: Bessere klinische Entscheidungen in der molekularen Präzisionsonkologie" Knowledge Connector: Bessere klinische Entscheidungen in der molekularen Präzisionsonkologie Forschende am Nationalen Centrum für Tumorerkrankungen (NCT) Heidelberg und am Deutschen Krebsforschungszentrum (DKFZ) haben mit dem Knowledge Connector ein digitales Werkzeug entwickelt, das klinische Entscheidungen in der molekularen Präzisionsonkologie erheblich […]
Mehr erfahren zu: "USA nicht mehr in der WHO: Weniger Geld, fehlende Expertise" USA nicht mehr in der WHO: Weniger Geld, fehlende Expertise Für den Chef der Weltgesundheitsorganisation gibt es durch den US-Austritt nur Verlierer. Was den USA und dem Rest der Welt abhandenkommt.