Kopf-Hals-Krebs: Neues bildgebendes Verfahren ermöglicht Analyse einzelner Zellen29. Oktober 2024 Patientenbiopsien wurden mit fluoreszierenden Antikörpern gefärbt. Die Kombination von morphologischen und Zellstatus-Markern ermöglicht eine multiparametrische Beschreibung jeder Zelle im Gewebe. Bild: Universität Helsinki / Karolina Punovuori Mit einer neuen Technik können Eigenschaften von Krebszellen und des sie umgebenden Gewebes auf Ebene einzelner Zellen und des umgebenden Gewebes analysiert werden. So können Prognose und Therapieansprechen besser beurteilt werden. Krebserkrankungen im Kopf-Hals-Bereich haben in den letzten 30 Jahren deutlich zugenommen. Jährlich gibt es in Deutschland etwa 18.000 bis 20.000 Neuerkrankungen an Kopf-Hals-Tumoren. Insbesondere die Inzidenz von Karzinomen des mittleren Rachenraumes hat zugenommen, was mit der Zunahme von Infektionen mit humanen Papillomaviren (HPV) in Zusammenhang gebracht wird. „Fingerabdruck“ für jeden Patienten Mit einer auf maschinellem Lernen basierenden Methode hat ein interdisziplinäres Forscherteam um Sara Wickström von der Universität Helsinki in Zusammenarbeit mit der Universität Turku und dem Max-Planck-Institut für molekulare Biomedizin in Deutschland Hunderte von Biobank-Patientenproben bis auf die Ebene einzelner Zellen genau analysiert. Die neue Technologie kombiniert Indikatoren für das Verhalten von Krebszellen und die Architektur des Tumors und des umgebenden gesunden Gewebes, um eine Art „Fingerabdruck“ für jeden Patienten zu erstellen, der zur Beurteilung der Prognose und des Ansprechens auf eine Krebstherapie verwendet werden kann. Das wichtigste Ergebnis der Studie war die Entwicklung eines neuen bildgebenden Verfahrens, das die Analyse von Biomarkern des Zellverhaltens mit morphologischen Analysen der Form einzelner Zellen und der Struktur des gesamten Tumorgewebes kombiniert. Mit dieser Methode konnten zwei neue, bisher unentdeckte Patientengruppen identifiziert werden: Die erste Gruppe hatte eine außergewöhnlich gute, die zweite eine außergewöhnlich schlechte Prognose. Der Unterschied wurde durch eine spezielle Kombination eines bestimmten Krebszellstatus und der Zusammensetzung des Gewebes, das die Krebszellen umgibt, erklärt. In der zweiten Gruppe wurde die Aggressivität der Krankheit mit der Signalübertragung zwischen dem Krebsgewebe und dem umgebenden gesunden Bindegewebe in Verbindung gebracht, die durch den epidermalen Wachstumsfaktor (EGF) vermittelt wird. Patienten identifizieren, die von einer aggressiven Behandlung profitieren „Diese Ergebnisse sind ein Durchbruch im Verständnis der Krebsentwicklung und -diagnostik. Wir haben zum ersten Mal gezeigt, dass bestimmte Kombinationen von bösartigen Zellen und Gewebezelltypen in vermeintlich gesundem Gewebe einen starken prognostischen Effekt auf das Fortschreiten von Krebs haben. Darüber hinaus haben wir einen zentralen Signalweg identifiziert, der diesen Kombinationseffekt erklärt und der pharmakologisch gezielt angegangen werden kann, um das Fortschreiten der Krebserkrankung signifikant zu beeinflussen”, erklärt Forschungsleiterin Wickström, ehemalige Professorin der Universität Helsinki und seit Ende 2021 Direktorin am Max-Planck-Institut für molekulare Biomedizin. „Darüber hinaus konnten wir mit unserer Methode Patienten mit besonders schlechter Prognose identifizieren, die von einer aggressiven Behandlungsstrategie profitieren würden. Auf der anderen Seite haben wir auch eine Gruppe von Patienten mit einer guten Prognose identifiziert, für die eine weniger aggressive Behandlung, zum Beispiel eine Operation allein, ausreichend sein könnte. Dies würde dazu beitragen, die Lebensqualität der Patienten zu erhalten“, ergänzt Karolina Punovuori, Erstautorin der Studie und Postdoktorandin in der Forschungsgruppe der Universität Helsinki. Diagnostischer Test in der Entwicklung Das neue bildgebende Verfahren öffnet die Tür für Präzisionsdiagnosen bei Krebserkrankungen im Kopf- und Halsbereich. Die Forscherinnen und Forscher entwickeln derzeit einen Diagnosetest für eine genauere Diagnose dieser Krebsart. Darüber hinaus untersuchen sie auch den Einsatz der Methode in der Diagnostik anderer Krebsarten, wie zum Beispiel des Dickdarmkrebses. „Unsere Forschung nutzt die neuesten Analysemethoden des maschinellen Lernens und der räumlichen Biologie. Wir analysieren Hunderte von Patientenproben und Millionen von Zellen, was nur mit Hilfe von Hochleistungsrechnern und künstlicher Intelligenz möglich ist. Diese Studie ist Teil einer neuen Revolution in der Krebsdiagnostik. Wir glauben, dass die Technologie die Krebsdiagnostik und die Genauigkeit der Behandlungsstrategien deutlich verbessern wird“, hebt Wickström hervor. „Das Imaging von Krebs-Biomarkern mit Antikörperfärbungen wird bereits klinisch eingesetzt. Daher wird die Methode nicht besonders teuer sein, da sie nur den von uns entwickelten Algorithmus und eine spezielle Kombination von Antikörpern erfordert. In Anbetracht der Kosten für die Krebsbehandlung ist dies sogar recht erschwinglich“, fährt sie fort.
Mehr erfahren zu: "Neue Studie: weitaus weniger Mikroorganismen in Tumoren als bisher angenommen" Weiterlesen nach Anmeldung Neue Studie: weitaus weniger Mikroorganismen in Tumoren als bisher angenommen Ein Forschungsteam der Johns Hopkins University (USA) hat herausgefunden, dass sequenzierte Tumorproben deutlich weniger mikrobielles Erbgut aufweisen, das tatsächlich mit einer bestimmten Krebsart assoziiert ist, als bisher angenommen. Bisherige Ergebnisse […]
Mehr erfahren zu: "KI in der Medizin: Wie Patienten darüber urteilen" KI in der Medizin: Wie Patienten darüber urteilen Was denken Patienten über Künstliche Intelligenz (KI) in der Medizin? Eine internationale Studie liefert eine Antwort. Zentrales Ergebnis: Je schlechter der eigene Gesundheitszustand, desto eher wird der Einsatz von KI […]
Mehr erfahren zu: "Lassen sich Depressionen und Schmerzen über das Ohr bekämpfen?" Lassen sich Depressionen und Schmerzen über das Ohr bekämpfen? Depressionen, Schlafstörungen, Schmerzen – Millionen Menschen leiden unter langwierigen medizinischen Problemen. Forschende der Hochschule Fresenius und der Universität Düsseldorf arbeiten an einer ungewöhnlichen Lösung. Ausgerechnet das Ohr wird dabei wichtig.