Krebstherapie: Wie Zellen gegen Medikamente resistent werden

Bild: © fotoliaxrender – stock.adobe.com

In ihrer neuen Studie haben Prof. Rune Linding von der Humboldt-Universität zu Berlin (HU) und seine KollegInnen mithilfe künstlicher Intelligenz Veränderungen in der Morphologie von Krebszellen untersucht und interpretiert, um zu verstehen, wie diese Zellen gegen Krebsmedikamente resistent werden.

Das Forscherteam verwendete einen Algorithmus (künstliche Intelligenz), um die Morphologie von etwa 850 Millionen Krebszellen über einen Zeitraum von drei Monaten zu analysieren. Damit untersuchten sie eine weitaus größere Zahl, als das für BiologInnen möglich wäre. Durch KI erhielt das Team einen einzigartigen Einblick in sehr subtile Veränderungen in der Morphologie, die Krebszellen erfahren, wenn sie gegen Therapien resistent werden. Für das menschliche Auge sind derartige Abweichungen unsichtbar.

Der Algorithmus war nicht nur in der Lage, genau vorherzusagen, welche Krebszellen gegen Arzneimittel resistent waren, indem er sie nur „ansah“, sondern er konnte auch vorschlagen, welche Proteine in den Zellen diese Arzneimittelresistenz wahrscheinlich antreiben.

Die ForscherInnen hoffen, dass dieses Wissen genutzt werden kann, um bessere Therapien gegen Krebs oder Arzneimittelresistenz für die Zukunft zu entwickeln.

„Es wird immer deutlicher, dass die Analyse der Zellmorphologie mithilfe von Deep-Learning-Algorithmen verwendet werden kann, um Tumore in klinischen Gewebescans zu identifizieren und zu klassifizieren. Wir kratzen jedoch nur an der Oberfläche hinsichtlich der klinischen Auswirkungen. Wir glauben, dass die Morphologie in Zukunft hier eine Ergänzung darstellen kann und vielleicht sogar genetische Analysen von Tumoren bei der Entdeckung besserer Krebstherapien ersetzen kann“, sagt Rune Linding, leitender Forscher des REWIRE-Projekts an der HU.

Publikation: linkinghub.elsevier.com/retrieve/pii/S2211124720316466

Weitere Informationen: www.lindinglab.science