Künstliche Intelligenz für die Lymphom-Diagnostik15. Dezember 2022 Oben: Gewebeschnitt eines Lymphoms. (© Institut für Pathologie, UKSH Kiel) Unten: Klassifizierung durch die Künstliche Intelligenz auf Basis des Gewebeschnitts. Die verschiedenen Farben stehen für die in diesem Bereich des Schnittes klassifizierte Lymphom Diagnose (andere Farbe = anderes Lymphom). (© Department of Statistical Bioinformatics, Universität Regensburg) Die Universität Kiel und das UKSH ist an einem interdisziplinären Projekt beteiligt, das die digitale Analyse von mikroskopischen Bildern erprobt und prüft, ob Künstliche Intelligenz molekulare Analysen ersetzen kann. Insbesondere in der Krebsdiagnostik spielt die feingewebliche Untersuchung eine große Rolle; nicht nur um gutartige und maligne Tumore zu unterscheiden, sondern auch um Tumorart, -stadium und -fortschreiten genau zu definieren. Dies ist die Voraussetzung, um die optimale Therapie auszuwählen. Hierbei kommt die alleinige mikroskopische Untersuchung an ihre Grenzen. Fortschritte erhofft sich Prof. Wolfram Klapper von der digitalen Pathologie. Der Leiter der Sektion Hämatopathologie und Lymphknotenregister am Institut für Pathologie des Universitätsklinikums Schleswig-Holstein (UKSH), Campus Kiel, ist Experte für die Diagnose maligner Lymphome. Gemeinsam mit Arbeitsgruppen aus Stuttgart, Würzburg, Göttingen und Regensburg hat der Kieler Pathologe im November das Projekt „Föderiertes Lernen in der Lymphompathologie: Infrastruktur, Modelle, Erweiterungsalgorithmen, Detektion von Hochrisikopatienten (FDLP)“ gestartet. Das Bundesministerium für Bildung und Forschung fördert das interdisziplinäre Vorhaben mit einer Laufzeit von zwei Jahren in Höhe von insgesamt rund einer Million Euro. Projektkoordinator ist der Bioinformatiker Professor Rainer Spang von der Universität Regensburg.Digitale Bilder von Lymphom-Gewebe an drei Standorten Bisher fertigen Pathologinnen und Pathologen aus Gewebeproben histologische Gewebeschnitte an und begutachten diese am Mikroskop. In dem neuen Projekt werden diese Gewebeschnitte an den drei beteiligten Pathologie-Standorten (Kiel, Würzburg, Stuttgart) mit Mikroskop-Scannern als digitale Bilder auf Servern gespeichert. Die Informatik-Arbeitsgruppen in Regensburg und Göttingen nutzen diese Bilddaten sowie die damit verknüpften molekularen Analysen und trainieren damit Programme zur künstlichen Intelligenz (KI). „Eine Besonderheit des Projektes ist, dass die medizinischen Daten den geschützten Raum eines Standortes nicht verlassen“, erklärt Klapper von der Medizinischen Fakultät der Christian-Albrechts-Universität zu Kiel (CAU). Beim sogenannten föderierten Lernen können maschinellen Lernalgorithmen mit Daten arbeiten, ohne dass die Daten den Speicherort verlassen müssen. Dadurch wird einerseits die Datensicherheit gewährt und andererseits durch die drei Standorte die Datenmenge erhöht. Potenzial der künstlichen Intelligenz für die Diagnose Ziele des Projekts sind zu prüfen, ob mittels KI die richtigen Diagnosen gestellt werden, und ob KI allein anhand der Bilddaten, einen speziellen Tumortyp mit aggressivem Krankheitsverlauf richtig vorhersagt. Konkret geht es um den Nachweis von B-Zell-Lymphomen mit Myc-Translokation, einer speziellen genetischen Veränderung, die mit schlechter Prognose einhergeht. Um diesen Tumortyp nachzuweisen, muss zusätzlich zum mikroskopischen Eindruck die Tumor-DNA untersucht werden. „Natürlich interessiert uns, ob die KI anhand der Bilder genauso gut Diagnosen stellen kann, wie es Pathologen und Pathologinnen am Mikroskop tun“, so Klapper. „Noch viel interessanter ist aber auszuloten, ob KI in den Bildern „mehr“ sehen kann als wir am Mikroskop. Denn im Gewebeschnitt sähen sich die Lymphome alle sehr ähnlich. Es gebe nur wenig optisch erfassbare Unterschiede. Klapper: „Wir sind darauf spezialisiert, diese Unterschiede zu nutzen, um verschiedene Lymphom-Arten zu unterscheiden. Das können wir auch ganz gut. Aber einige von denen sehen für uns gleich aus, obwohl sie sich klinisch unterschiedlich verhalten. Da kommen wir an unsere Grenzen.“ Perspektivisch gehe es darum, künstliche Intelligenz in den Diagnostikprozess einzubinden und damit schnellere und genauere Informationen zur Therapieplanung zur Verfügung stellen zu können. Hierfür können die Forschenden auf ein einmalig großes Archiv von Gewebeproben von Lymphomen zurückgreifen, die seit langem in der Sektion Hämatopathologie am UKSH, einem deutschlandweit aktiven, spezialisierten Diagnostikzentrum, gesammelt werden. Wenn sich in dem Projekt bestätigt, dass die digitale Pathologie Fortschritte verspricht, die über die reine Begutachtung am Mikroskop hinausgehen, könnte das der Digitalisierung in der Pathologie Aufwind verschaffen, hofft Klapper.
Mehr erfahren zu: "Genetischer Risikofaktor und Virusinfektion tragen gemeinsam zur Multiplen Sklerose bei" Genetischer Risikofaktor und Virusinfektion tragen gemeinsam zur Multiplen Sklerose bei Multiple Sklerose wird durch eine Infektion mit dem Epstein-Barr-Virus mitverursacht. Daneben spielen aber auch bestimmte Genvarianten eine wichtige Rolle. Wie Forschende der Universität Zürich zeigen, führt erst das molekulare Zusammenspiel […]
Mehr erfahren zu: "2000 Jahre alte Herpesviren im menschlichen Genom" 2000 Jahre alte Herpesviren im menschlichen Genom Eine neue Studie bestätigt, dass bestimmte humane Herpesviren bereits vor tausenden Jahren Teil des menschlichen Genoms wurden. Die aktuellen Genomdaten liefern den ersten direkten Beweis für die Entwicklung der Viren […]
Mehr erfahren zu: "Darmpolypen: DNA-Tests verbessern den Einblick in erbliche Risiken" Darmpolypen: DNA-Tests verbessern den Einblick in erbliche Risiken Bei fünf bis zehn Prozent der Darmkrebspatienten spielen erbliche Faktoren eine Rolle. Dabei ist der Anteil bei jüngeren Personen höher. Die DNA-Analyse von Darmpolypen liefert wichtige zusätzliche Informationen über die […]