Mit Bio-Tinte Knorpel ersetzen

Mikroskopische Aufnahme der in der Bio-Tinte enthaltenen Gelstäbchen. Foto: AVT/CVT RWTH Aachen University

Wachstum und Ersatz von beschädigtem Knorpelgewebe mithilfe einer 4-D-Druck-Technologie: Ein Wissenschaftsteam des DWI – Leibniz-Institut für Interaktive Materialien und der RWTH Aachen erhält von der Werner Siemens-Stiftung für fünf Jahre eine Fördersumme von rund 10 Millionen Euro für das Projekt „TriggerINK“.

Ein interdisziplinäres Team vom DWI – Leibniz-Institut für Interaktive Materialien und der Rheinisch-Westfälischen Technischen Hochschule (RWTH) Aachen will im Projekt TriggerINK eine Alternativtechnologie für den Ersatz von Gewebe entwickeln.

Wollen mit TriggerINK eine Alternative für den Ersatz von Körpergeweben entwickeln (von links): Stefan Hecht, Laura De Laporte, Matthias Wessling und Andreas Herrmann. Foto: Stefanie Ratzke/DWI – Leibniz-Institut für Interaktive Materialien

Das Team will nun mithilfe von TriggerINK eine neue Methode für den Ersatz von beschädigtem Körpergewebe entwickeln: Mittels direktem Druck von 4-D-Strukturen in die betroffene Wunde. Zur Erprobung der Technologie haben die Forschenden Knorpel im Kniegelenk ausgewählt. „Wir stehen vor einer Vielzahl von Herausforderungen, wenn wir gesundes Gewebe an beschädigten Stellen nachwachsen lassen möchten. Beispielsweise muss das gedruckte Material einen sehr bestimmten, zum natürlichen Pendant vergleichbaren Aufbau haben. Es enthält daher Poren und orientierte Mikrostrukturen, welche das Wachstum von körpereigene Zellen in das Gewebe fördern und es damit seine ursprüngliche Funktion wieder erfüllen kann. Im Fall des Kniegelenks muss es zum Beispiel Druck- oder Reibungsbelastung standhalten“, erläutert der Chemie-Ingenieur Matthias Wessling. Seine Forschung beschäftigt sich unter anderem mit den verfahrenstechnischen Anforderungen zum Druck poröser und mikro-strukturierter Objekte.

Gebündeltes Wissen als Schlüssel zum Erfolg

TriggerINK ist ein Paradebeispiel dafür, wie innovative Wissenschaftsvorhaben organisiert sein können: Sie bündeln das Wissen unterschiedlichster Fachrichtungen. De Laporte und ihrer Kompetenz zur Entwicklung von biomedizinischen Materialien vereinen insgesamt vier führende Experten ihres jeweiligen Feldes ihre Kompetenzen: Die Professoren-Kollegen Stefan Hecht (3D-Druck durch Licht), Andreas Herrmann (Wirkstoff-Freisetzung durch Ultraschall) und Wessling (chemische Verfahrenstechnik) vervollständigen das Team. „Es ist eine wirkliche Besonderheit und ein Privileg, dass wir am Institut derart unterschiedliches Wissen unter einem Dach haben. Wegen dieses Heimspiel-Vorteils und der besonderen Organisationsform mit einem Start up-ähnlichem Aufbau des Projekts sind wir zuversichtlich, diese Entwicklung in großen Schritten vorantreiben zu können“, erklärt der Chemiker Hecht. Doch bei diesem Personenkreis bleibt es nicht: „Wir streben die Entwicklung eines Medizinproduktes an – das heißt, auch die Perspektive der Anwendenden aus der Klinik ist für uns unabdingbar. Daher begleiten und beraten uns ebenfalls hochrangige Kolleginnen und Kollegen aus der Medizin sowie aus der molekularen Zellbiologie“, ergänzt er.

Eine Tinte, viele Eigenschaften

Die Idee von TriggerINK beinhaltet während des Druckprozesses fließend ineinander übergehende Schritte. Dabei treten die verschiedenen Eigenschaften der Bio-Tinte zu Tage: „Ziel ist es, die Bio-Tinte kontinuierlich in die Wunde zu drucken. Sie enthält verschiedene Inhaltsstoffe, die zum Beispiel auf die Bestrahlung mit Licht reagieren. So entstehen während des Druckprozesses Vernetzungen, die ein Stützgerüst und Poren ausbilden“, erklärt Hecht, in dessen Laboren solche speziellen licht-empfindlichen Bausteine entwickelt werden. Was ebenfalls während des Drucks passiert: Durch ein schwaches Magnetfeld wird die zell-leitende Mikrostrukturierung in eine bestimmte Richtung orientiert.

„Die Tinte enthält kleine Gel-Stäbchen mit winzigen magnetischen Partikeln. Daher lässt sich die Ausrichtung der Mikrostrukturierung und letztlich das gerichtete Wachstum des Gewebes steuern. Die Vernetzung und Orientierungsrichtung bleibt auch dann bestehen, wenn das Magnetfeld wieder entfernt ist“, ergänzt De Laporte. Für die Tinte wird sich das Team einer Technologie bedienen, die De Laporte entwickelt und patentiert hat: das sogenannte ANISOGEL für gerichtetes Wachstum von Nervenzellen. Des Weiteren soll die Bio-Tinte verkapselte Wachstumsfaktoren und immunmodulierende Wirkstoffe enthalten. „Diese lassen sich bei Bedarf mithilfe von Ultraschall freisetzen und sollen so den Heilungsprozess unterstützen“, erläutert Herrmann. Er ist spezialisiert auf alternative Freisetzungssysteme von Wirkstoffen. Es handelt sich um ein ambitioniertes und faszinierendes Projekt, das ganz im Sinne der Mission des Aachener Leibniz-Institutes ist, schließt er ab: Materialien für ein besseres Leben zu entwickeln.