Mit Gold gegen Krebs4. April 2025 Bild: ©fotobieshutterb – stock.adobe.com Ein französisches Forschungsteam stellt in der Zeitschrift „Angewandte Chemie“ eine erste Studie über die Speziation und Verteilung eines organischen Gold(III)-Komplexes in Krebszellen vor: Demnach akkumuliert der Organogold(III)-Komplex in Mitochondrien von Lungenkrebszellen. Gold hat eine einzigartige elektronische Struktur, die ihm außergewöhnliche chemische Eigenschaften verleiht, die sich in subtilen Wechselwirkungen mit biologischen Molekülen niederschlagen. Bisher liegen jedoch nur wenige Informationen vor, wie sich Gold(III)-Komplexverbindungen mit Antitumorwirkung in biologischer Umgebung verhalten. Verändern sie sich? Werden sie zu Gold(I) oder zu metallischem Gold reduziert? Wo in der Zelle greifen sie an? Forschende von der Sorbonne Université, der Université Grenoble Alpes, CNRS, INSERM und der European Synchrotron Research Facility um Benoît Bertrand, Michèle Salmain, Sylvain Bohic und Jean-Louis Hazemann haben jetzt eine umfassende Studie über die chemische Reaktivität und die Antitumorwirkung verschiedener Gold(III)-Komplexe durchgeführt. Dazu verwendeten sie eine Kombination von Methoden auf Basis von Synchroton-Röntgenstrahlung: sehr intensiver, gebündelter Lichtblitze, die in Teilchenbeschleunigern erzeugt werden. Stabile Komplexe Gemeinsam war den verschiedenen untersuchten Komplexverbindungen (kationische Biphenyl-Gold(III)-Komplexe mit Aryl-, Alkyl- und Diphosphin-Hilfsliganden, sog. [(C^C)Au(P^P)]+-Kationen), dass das Gold von zwei Kohlenstoffatomen des ersten sowie zwei Phosphoratomen des zweiten Liganden „in die Zange genommen“ wird. Die Analysen zeigten, dass alle untersuchten Komplexe sowohl unter zellfreien Bedingungen als auch in Lungenkrebszellen stabil waren. Sie wurden weder reduziert noch trennten sie sich von ihre Liganden, um neue Bindungen einzugehen. Organogold(III)-Komplex akkumuliert in Mitochondrien von Lungenkrebszellen. Abbildung: Wiley-VCH. Bildquelle: Gesellschaft Deutscher Chemiker Gegenüber Tumorzellen zeigten sie sich toxisch, am aktivsten war ein „dppe-Komplex“ (Biphenyl-Gold(III)-Komplex mit 1,2-Diphenylphosphinoethan-(dppe)-Liganden). Dem Team gelang mit einer speziellen Ausführung der Synchroton-Kryo-Röntgennanoanalyse, Gold und andere chemische Elemente in tiefgefrorenen Lungenkrebszellen mit einer Auflösung im Nanometerbereich zu „kartieren“ und den dppe-Komplex zu lokalisieren: Er wird selektiv in den Mitochondrien akkumuliert. Vorteil der Methode: Eine Markierung, die Ergebnisse verfälschen könnte, ist nicht notwendig. So lassen sich Zellen in einem nahezu nativen Zustand auf der Nanoskala untersuchen. Mit Röntgenabsorptionsspektroskopie-Methoden konnte das Team wichtige Informationen über die Wertigkeit, die Geometrie und den Oxidationszustand der Goldatome im Komplex erhalten. Diese deuten darauf hin, dass die Antitumor-Wirksamkeit der Goldkomplexe hauptsächlich auf die native kationische Spezies (die [(C^C)Au(P^P)]+-Kationen) zurückgeht. Vermutlich kommt es zu Wechselwirkungen des gesamten Komplexes mit spezifischen biologischen Molekülen, deren Funktion gestört wird. Darin unterscheiden sich diese Wirkstoffkandidaten von anderen, anders aufgebauten Goldkomplextypen, die den Zelltod hauptsächlich durch eine direkte Koordination des Goldzentrums mit Biomolekülen auslösen. Die Ergebnisse stellen somit eine Beziehung zwischen der chemischen Struktur und der Reaktivität einer Goldverbindung, ihrer Spezies in der Zelle und der Zytotoxizität her.
Mehr erfahren zu: "Neue Angriffspunkte des Immunsystems auf Melanomzellen identifiziert" Neue Angriffspunkte des Immunsystems auf Melanomzellen identifiziert Forschende beschreiben in einer in „Cell“ veröffentlichten Studie Vertiefungen auf der Oberfläche von Melanomzellen, die als zentrale Immunareale fungieren und offenbar Hauptorte der Tumorzerstörung darstellen.
Mehr erfahren zu: "Prostatakarzinom: Neue Methode zur Schwächung von Krebszellen könnte die Behandlung beschleunigen" Weiterlesen nach Anmeldung Prostatakarzinom: Neue Methode zur Schwächung von Krebszellen könnte die Behandlung beschleunigen Eine neue Studie aus Australien zeigt, dass die Enzyme PDIA1 und PDIA5 entscheidend dazu beitragen, dass Prostatakrebszellen wachsen, überleben und therapieresistent werden. Die Entdeckung bietet therapeutisches Potenzial.
Mehr erfahren zu: "Prostatakrebs: Virtuelles 3D-Modell soll Operationsplanung verbessern" Prostatakrebs: Virtuelles 3D-Modell soll Operationsplanung verbessern Forschende der Martini-Klinik planen in einer aktuellen Studie´zu Prostatakrebs, zusätzlich zur PSMA-PET sowohl für die Patientenaufklärung als auch für die Operateure ein virtuelles 3D-Modell in der präoperativen Bildgebung einzusetzen.