Mittels KI: Genauere Prognosen für bestmögliche Therapien29. Juli 2024 Sebastian Haferkamp, Gunther Glehr und James Hutchinson (v.li.) haben gemeinsam ein KI-basiertes System entwickelt, um nicht-klassifizierbare Proben herauszufiltern und somit noch genauere Diagnosen stellen zu können. (Foto: © Vincent Schmucker/UKR) In Zukunft werden personalisierte medizinische Diagnosen auf großen Datenmengen basieren. Ärzte werden viele Biomarker messen, um Erkrankungen zu bestätigen oder auszuschließen. Dabei werden viele Daten gesammelt, welche aber auch Fehlinformationen enthalten können. Forscher des Universitätsklinikums Regensburg (UKR) entwickelten daher ein auf künstlicher Intelligenz basierendes System, um nichtklassifizierbare Proben herauszufiltern. Dadurch könnten genauere und individuellere Diagnosen gestellt werden. „Wenn wir Biomarker in großen Gruppen von Patienten und gesunden Kontrollpersonen messen, finden wir typischerweise Wertebereiche ohne nützliche Informationen, um jemanden als gesund oder krank zu klassifizieren“, erklärt Dr. Gunther Glehr, wissenschaftlicher Mitarbeiter der Experimentellen Chirurgie in der Klinik und Poliklinik für Chirurgie des UKR, den Ausgangspunkt der Forschungsarbeit. Dabei stellen eben diese nicht-informativen Proben die Mediziner vor besondere Probleme, wenn es darum geht, eine genaue medizinische Diagnose zu stellen. Um dieses Problem zu lösen, setzen die Forscher eine Berechnungsmethode ein, bei der Gruppen von Proben in klassifizierbare und nichtklassifizierbare Teilmengen aufgeteilt werden. Ziel ist es, die nicht aussagekräftigen Proben auszuschließen, wodurch sich darauffolgende Diagnosemodelle verbessern. „Genauere Prognosen helfen uns, die beste Therapie für den einzelnen Patienten zu finden“, sagt Prof. Sebastian Haferkamp, Facharzt für Dermatologische Onkologie der Klinik und Poliklinik für Dermatologie des UKR. So waren die Forscher etwa in der Lage, eine Untergruppe von Hautkrebspatienten zu identifizieren, bei welchen schwere Behandlungsnebenwirkungen auftreten würden. „Gesundheit ist ein streng reguliertes Gleichgewicht“ „Die Tatsache, dass es bei so vielen verschiedenen Krankheitsmarkern informative und nicht-informative Bereiche gibt, spiegelt das Wesen von Krankheiten wider. Gesundheit ist ein streng reguliertes Gleichgewicht, während Krankheit Dysregulation und größere Variabilität bedeutet“, sagt Prof. James Hutchinson, wissenschaftlicher Mitarbeiter und Forschungsleiter der Experimentellen Chirurgie in der Klinik und Poliklinik für Chirurgie des UKR. Die Forscher fanden heraus, dass genau diese Unterschiede in der Variabilität häufig zu nicht-klassifizierbaren Proben führen. Eine Einschränkung von Datensätzen ist daher eine wirksame Methode, um die Suche und Interpretation von Biomarkern zu unterstützen.
Mehr erfahren zu: "Genetischer Risikofaktor und Virusinfektion tragen gemeinsam zur Multiplen Sklerose bei" Genetischer Risikofaktor und Virusinfektion tragen gemeinsam zur Multiplen Sklerose bei Multiple Sklerose wird durch eine Infektion mit dem Epstein-Barr-Virus mitverursacht. Daneben spielen aber auch bestimmte Genvarianten eine wichtige Rolle. Wie Forschende der Universität Zürich zeigen, führt erst das molekulare Zusammenspiel […]
Mehr erfahren zu: "2000 Jahre alte Herpesviren im menschlichen Genom" 2000 Jahre alte Herpesviren im menschlichen Genom Eine neue Studie bestätigt, dass bestimmte humane Herpesviren bereits vor tausenden Jahren Teil des menschlichen Genoms wurden. Die aktuellen Genomdaten liefern den ersten direkten Beweis für die Entwicklung der Viren […]
Mehr erfahren zu: "Darmpolypen: DNA-Tests verbessern den Einblick in erbliche Risiken" Darmpolypen: DNA-Tests verbessern den Einblick in erbliche Risiken Bei fünf bis zehn Prozent der Darmkrebspatienten spielen erbliche Faktoren eine Rolle. Dabei ist der Anteil bei jüngeren Personen höher. Die DNA-Analyse von Darmpolypen liefert wichtige zusätzliche Informationen über die […]