Neovaskularisation: Echte Blutgefäße auf einem Chip

Der Biochip: In jeder der vier Kammern können unterschiedliche Wachstumsbedingungen, die großen Einfluss auf die Anzucht künstlicher Gefäße haben, erzeugt werden. Foto: TU Wien

An der Technischen Universität (TU) Wien sind Bio-Chips entwickelt worden, in denen man Gewebe herstellen und untersuchen kann – so auch Blutgefäße. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

“Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen Blutgefäßen, ist allerdings eine viel schwierigere Aufgabe”, erkklärt die TU Wien. Biologisch wichtige Transportprozesse, etwa von Sauerstoff, Zucker und anderen Substanzen ins Gewebe, habe man bis heute noch nicht zur Gänze verstanden. Das solle sich nun mit einer ganz neuen Herangehensweise an das Problem ändern: An der TU Wien baue man daher Mini-Gewebe am Biochip nach – sogenannte „Organs-on-a-Chip“. So könne man komplizierte biologische Prozesse präzise steuern, kontrollieren und messen – viel besser als es in Tierversuchen oder direkt am Menschen möglich wäre.

„Besser als Tierversuche“
„Rund um eine frische Wunde muss neues Gewebe nachwachsen, in dem sich unter anderem auch neue Blutgefäße bilden“, erklärt Dipl.-Ing. Barbara Bachmann vom Institut für Angewandte Synthesechemie der TU Wien. „Wir machen uns diese natürlichen, körpereigenen Wundheilungsprozesse zu Nutze, um Blutgefäße im Labor in ganz kleinen Biochips zu züchten.“
„Tierversuche haben viele Nachteile – nicht nur auf ethischer, sondern auch auf wissenschaftlicher Ebene“, sagt der Arbeitsgruppenleiter Prof. Peter Ertl. „Ihre Resultate sind nie hundertprozentig auf den Menschen übertragbar, und so kommt es bei klinischen Studien immer wieder zu überraschenden Nebenwirkungen, die sich im Tiermodell nicht gezeigt hatten.“

Nun, so betont die TU Wien, könne man mit Biochip-Technologie hochpräzise regulieren, mit welchen Substanzen die menschlichen Gefäßzellen versorgt werden. Dadurch sei es möglich, menschliche Zellen über mehrere Wochen hinweg zu kultivieren und zu untersuchen. „Wir verwenden neben Endothelzellen, die Gefäßinnenseiten auskleiden, auch Stammzellen, die maßgeblich zur Gefäßstabilisierung beitragen“, sagt Dr. Mario Rothbauer. „Innerhalb von Tagen beginnt sich wie von Zauberhand im Biochip ein Netzwerk winziger Blutgefäße auszubilden.“

“Direkt neben diesem neuentstandenen Geflecht an feinen Blutkapillaren führt die Leitung vorbei, durch die das Gewebe von außen mit Sauerstoff und Nährstoffen versorgt wird – die „künstliche Arterie“ des Biochips”, heißt es zur weiteren Erklärung. Die feinen, natürlich gewachsenen Blutgefäße seien nicht direkt mit dieser künstlichen Leitung verbunden, aber die Grenzen zwischen den beiden Bereichen seien nicht dicht, daher finde ein permanenter Stoffaustausch statt.

„Das ist eine Situation, die in der Medizin eine wichtige Rolle spielt“, sagt Ertl: „Einerseits bei der Wundheilung, andererseits aber auch bei Krankheitsbildern wie Krebs.“ Ein schnell wachsender Tumor muss es schaffen, mit ausreichenden Mengen an Nährstoffen versorgt zu werden – darum sorgt er für unnatürlich schnelles Wachstum feiner Blutkapillaren. Wie der Stoffaustausch genau abläuft, kann nun viel besser als bisher möglich im Chip untersucht werden. „Wir konnten zeigen, dass dort Stoffaustausch und Versorgung im Gewebe tatsächlich vom Abstand zur Zufluss-Leitung abhängen, wie das auch in einem natürlichen Gewebe der Fall wäre“, sagt Dipl.-Ing. Sarah Spitz. „Und ganz entscheidend ist: Wir konnten nachweisen, dass sich die Stoffzufuhr ins Gewebe fein regulieren lässt, indem wir die Flussgeschwindigkeit in den Biochips verändern – so einfach ist das.“

Interdisziplinäre Forschung
In diesem Forschungsbereich greifen mehrere wissenschaftliche Disziplinen eng ineinander – Medizin und Chemie, aber auch Mikrofluidik – die Wissenschaft vom Strömungsverhalten winziger Stoffmengen, oder auch Materialwissenschaft und Fertigungstechnik –, um die präzise Herstellung der Chips überhaupt erst zu ermöglichen. Die TU Wien arbeitete dabei laut Mitteilung mit dem Ludwig Boltzmann Institut für Experimentelle und Klinische Traumatologie zusammen, unterstützt durch das „Interreg“-Förderprogramm der Europäischen Union.
„Nur durch diese interdisziplinäre Vielfalt können wir uns einen Vorsprung herausarbeiten und Forschungsergebnisse erzielen, die international für Aufsehen sorgen“, sagt Ertl. „Unsere Ergebnisse zeigen, dass die Bio-Chips ein ausgezeichnetes Modell bieten, um die Sauerstoffzufuhr in neu gebildeten Geweben zu studieren. Das ist für uns erst der Beginn. Die Forschungsfragen, die sich dadurch nun auftun, lassen sich noch gar nicht überblicken.“

Quelle: Technische Universität Wien