Netzhautorganoide: Neues Verfahren des Molekularen Engineering ermöglicht komplexe Organoide10. September 2024 Netzhautorganoid mit mikroskopisch kleiner Kugel aus DNA (gelb) und verschiedenen retinalen Zelltypen (grün, zyan, magenta).Illustration.© Cassian Afting, AG Wittbrodt Ein interdisziplinäres Forschungsteam verwendet Mikrokugeln aus DNA, um die Entwicklung von gezüchtetem Gewebe zu steuern. Dadurch können komplexere Organoide entwickelt werden. Mithilfe eines neuen Verfahrens des Molekularen Engineering können Organoide gezielt in ihrer Entwicklung beeinflusst werden. Zum Einsatz kommen dabei Mikrokugeln aus gezielt gefalteter DNA, die im Inneren der Gewebestrukturen Wachstumsfaktoren oder andere Signalmoleküle freisetzen. Dadurch entstehen wesentlich komplexere Organoide, die die entsprechenden Gewebe besser nachahmen und einen realistischeren Zellmix aufweisen als bisher. Ein Wissenschaftsteam des Exzellenzclusters „3D Matter Made to Order“ mit Wissenschaftlern des Centre for Organismal Studies und des Zentrums für Molekulare Biologie der Universität Heidelberg, des BioQuant-Zentrums der Universität sowie des Max-Planck-Instituts für medizinische Forschung in Heidelberg hat diesen Ansatz entwickelt. Organoide werden in der Grundlagenforschung eingesetzt, um neue Erkenntnisse zur menschlichen Entwicklung zu gewinnen oder um die Entstehung von Krankheiten zu untersuchen. „Bislang war es nicht möglich, das Wachstum solcher Gewebestrukturen aus ihrem Inneren heraus zu kontrollieren“, erklärt Dr. Cassian Afting, wissenschaftlich tätiger Mediziner am Centre for Organismal Studies (COS). „Mit dem neuartigen Verfahren können wir nun genau bestimmen, wann und wo im heranwachsenden Gewebe entscheidende Entwicklungssignale ausgelöst werden“, betont Tobias Walther, Biotechnologe und Doktorand am Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) sowie am Max-Planck-Institut für medizinische Forschung in Heidelberg. Dazu konstruierte das interdisziplinäre Forschungsteam aus Biologen, Medizinern, Physikern und Materialwissenschaftlern mikroskopisch kleine Kugeln aus DNA, die sich mit Proteinen oder anderen Molekülen „beladen“ lassen. Diese Mikrokugeln werden den Organoiden injiziert und geben ihre Fracht unter Einstrahlung von UV-Licht ab. Dadurch können Wachstumsfaktoren oder andere Signalmoleküle zu jedem beliebigen Zeitpunkt und an jeder Stelle in dem sich entwickelnden Gewebestück freigesetzt werden. Das Verfahren überprüften die Wissenschaftler an Netzhautorganoiden des Japanischen Reisfisches Medaka, indem sie mit einem Wnt-Signalmolekül beladene Mikrokugeln zielgenau in das Gewebe einbrachten. Damit gelang es den Forschern, Zellen des retinalen Pigmentepithels dazu zu bringen, sich in direkter Nachbarschaft zu neuroretinalem Gewebe zu bilden. „Dank der lokalisierten Freisetzung von Signalmolekülen erreichen wir einen realistischeren Mix aus Zelltypen und kommen damit der zellulären Zusammensetzung eines natürlichen Fischauges wesentlich näher als mit herkömmlichen Zellkulturen“, erläutert Prof. Dr. Kerstin Göpfrich, die am ZMBH und am Max-Planck-Institut für medizinische Forschung auf dem Gebiet der synthetischen Biologie forscht. Nach Angaben der Wissenschaftler können die DNA-Mikrokugeln flexibel angepasst werden, um viele verschiedene Signalmoleküle in unterschiedlichen Arten von gezüchtetem Gewebe zu transportieren. „Das eröffnet neue Möglichkeiten für das Engineering von Organoiden mit verbesserter zellulärer Komplexität und Organisation“, erläutert Prof. Joachim Wittbrodt, der die Forschungsarbeiten gemeinsam mit Prof. Göpfrich geleitet hat. „Komplexere Organoidmodelle könnten die Forschung auf dem Gebiet der menschlichen Entwicklung und Krankheit beschleunigen und potenziell auch die Organoid-basierte Wirkstoffforschung bereichern“, so der Heidelberger Entwicklungsbiologe, dessen Forschungsgruppe am COS angesiedelt ist. Das neue Verfahren zur Erzeugung komplexer Organoide entstand im Exzellenzcluster „3D Matter Made to Order“, das gemeinsam von der Universität Heidelberg und dem Karlsruher Institut für Technologie getragen wird. Gefördert wurden die Arbeiten vom Europäischen Forschungsrat (ERC) im Rahmen eines ERC Starting Grant für Kerstin Göpfrich und der Deutschen Forschungsgemeinschaft. Die Forschungsergebnisse wurden in der Fachzeitschrift „Nature Nanotechnology“ veröffentlicht.
Mehr erfahren zu: "Glaukom: Gängige Augensalben können Implantate schädigen" Weiterlesen nach Anmeldung Glaukom: Gängige Augensalben können Implantate schädigen Anhand klinischer und experimenteller Belege zeigt eine neue Studie der Nagoya-Universität (Japan), dass Augensalben auf Petrolatum-Basis ein bestimmtes Drainage-Implantat beeinträchtigen können.
Mehr erfahren zu: "Demenz vorbeugen: Warum Hörgerät und Brille wichtig fürs Gehirn sind" Demenz vorbeugen: Warum Hörgerät und Brille wichtig fürs Gehirn sind Was haben Hörgerät und Brille mit Demenzprävention zu tun? Mehr, als viele denken. Die gemeinnützige Alzheimer Forschung Initiative (AFI) zeigt, warum unbehandelte Hör- und Sehschwächen das Demenzrisiko erhöhen können – […]
Mehr erfahren zu: "Biosensoren: Mit leuchtenden GPCRs Licht ins Dunkel bringen" Biosensoren: Mit leuchtenden GPCRs Licht ins Dunkel bringen Einem Forschungsteam der Universitätsmedizin Mainz ist es gelungen, erstmals in lebenden Zellen zu beobachten, wie G-Protein-gekoppelte Rezeptoren auf Wirkstoffe reagieren.