Neue Einblicke: So wandern Kalium und Natrium durch Ionenkanäle11. März 2022 Dynamische Ionen. Illustration: Barth van Rossum Ionenkanäle sorgen dafür, dass Kalium und Natrium in die Zellen gelangen. Dabei müssen die Ionen ein Nadelöhr passieren, den Selektivitätsfilter. Dessen Struktur ist mittlerweile gut beschrieben, jedoch war es bislang nicht möglich, die Ionen selbst unter natürlichen Bedingungen im Kanal zu betrachten. Durch eine Weiterentwicklung der Festkörper-NMR-Spektroskopie ist Forschenden vom Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) das jetzt gelungen. Sie sind nur wenige Nanometer groß und besitzen eine fundamentale Bedeutung für biologische Prozesse: Ionenkanäle lassen lebenswichtige Ionen wie Kalium oder Natrium in Zellen hinein- und auch wieder hinausströmen. Kaliumionen werden zum Beispiel für die Weiterleitung von Nervenimpulsen wie Sehsignalen oder die Steuerung der Herzfrequenz benötigt. Schon kleinste Veränderungen an den Kanälen können zu schweren Komplikationen führen. Die Arbeitsgruppe von Prof. Adam Lange untersucht seit Längerem Ionenkanäle in Zellmembranen unter natürlichen Bedingungen mithilfe der Festkörper-Kernspinresonanz(NMR)-Spektroskopie. Diese Technologie liefert aussagekräftigere Daten als die sonst übliche Röntgenkristallografie, die die kleinen Kanäle nur in einem wenig realistischen Umfeld darstellen kann. Durch technologische Fortschritte haben die Forschenden in den letzten Jahren insbesondere viel über die Funktion und Struktur des Selektivitätsfilters gelernt. Das ist jenes zentrale Nadelöhr in den Kanälen, das Abermilliarden von Ionen täglich passieren müssen. Bislang war es allerdings nicht möglich, die Ionen selbst unter natürlichen Bedingungen im Filter zu betrachten. Denn Kalium und Natrium lassen sich mit der NMR Spektroskopie praktisch nicht detektieren.Der Trick mit dem AmmoniumMit einem Trick hat das Forscherteam nun dieses Problem gelöst: Das Ion Ammonium ist mit seinen beiden Komponenten Stickstoff und Wasserstoff sehr wohl in der NMR-Spektroskopie detektierbar und Kalium-Ionen sehr ähnlich. Es dient in diesem Falle als hervorragender Ersatz.„Vorher waren die Ionen für uns nicht sichtbar, wir waren sozusagen blind, weil es keine passende Technik gab“, erklärt Carl Öster, Erstautor der im Fachjournal „Journal of the American Chemical Society“ (JACS) publizierten Studie. „Durch den Trick mit dem Ammonium und weiteren technischen Anpassungen können wir die Ionen nun zum ersten Mal direkt im Kanal anschauen.“Die Forscher wollen die „Ammonium-Methode“ zum Beispiel dafür nutzen, pharmakologische Effekte zu untersuchen. Für einige Moleküle beziehungsweise Medikamente wurde nämlich gezeigt, dass sie die Konfiguration der Ionen im Selektivitätsfilter beeinflussen. Doch wie das genau geschieht, war bis dato schwer zu untersuchen.Neue Perspektiven für die IonenkanalforschungLange und seine Arbeitsgruppe haben für die aktuelle Studie intensiv mit Forschern vom Max-Planck-Institut für Multidisziplinäre Naturwissenschaften in Göttingen zusammengearbeitet. Die Göttinger Kollegen haben unter anderem Molekulardynamiksimulationen durchgeführt, mit denen sich am Computer beobachten lässt, wie die Ionen durch den Kanal wandern. Zudem haben dort Messungen an einem 1,2 GHz NMR-Spektrometer stattgefunden, deren Ergebnisse ebenfalls mit in die aktuelle Studie eingeflossen sind. Derart hochauflösende Geräte gibt es derzeit nur an sehr wenigen Standorten weltweit – einer davon ist Göttingen.Doch auch auf dem Campus Berlin Buch wird bald ein 1,2 GHz NMR-Spektrometer stehen. Das FMP errichtet dafür gerade ein eigenes Gebäude, bis zum Sommer soll es fertig sein. „Das wird unseren Standort für die nächsten zehn Jahre enorm stärken“, meint Lange. Der Biophysiker hat noch einen weiteren Aspekt vor Augen: „Wir werden uns mit dem Spitzengerät noch komplexere Ionenkanäle anschauen können, und diese Grundlagenforschung wird früher oder später auch für pharmakologische Ansätze von großem Nutzen sein.“Originalpublikation:Carl Öster, Kumar Tekwani Movellan, Benjamin Goold, Kitty Hendriks, Sascha Lange, Stefan Becker, Bert L. de Groot, Wojciech Kopec, Loren B. Andreas, Adam Lange, Direct Detection of Bound Ammonium Ions in the Selectivity Filter of Ion Channels by Solid-State NMR. J. Am. Chem. Soc. doi.org/10.1021/jacs.1c13247
Mehr erfahren zu: "Longevity-Forschung: Gesünder im Alter durch Stress" Longevity-Forschung: Gesünder im Alter durch Stress Gewisse Bestandteile in der Nahrung lösen bei Fadenwürmern eine milde Form von Stress aus. Dadurch werden die Tiere jedoch nicht krank, sondern im Gegenteil, sie bleiben im Alter sogar länger […]
Mehr erfahren zu: "Schnellere Anerkennungsverfahren für ausländische Ärzte geplant" Schnellere Anerkennungsverfahren für ausländische Ärzte geplant Im deutschen Gesundheitswesen sind Fachkräfte knapp, das gilt außer für die Pflege auch für Heilberufe. Verfahren für die Zuwanderung sollen jetzt vereinfacht werden.
Mehr erfahren zu: "200 Jahre Braille: KI macht Punktschrift noch vielseitiger" 200 Jahre Braille: KI macht Punktschrift noch vielseitiger Braille bleibt für blinde Menschen unersetzlich – auch im Zeitalter Künstlicher Intelligenz (KI). Wie digitale Technik die Punktschrift ergänzt und neue Möglichkeiten schafft.