Polygene Krankheiten: Studie untersucht Einfluss von Mutationen

Foto: © Artur/stock.adobe.com

Bei Krankheiten wie Diabetes oder Schizophrenie ist die Identifikation der Genomregionen komplex, da mehrere Gene zu den Krankheiten beitragen. Eine aktuelle Studie Institute of Science and Technology Austria (ISTA), Österreich, liefert neue Erkenntnisse.

Gemeinsam mit Michal Hledík, einem ISTA-Absolventen, und Prof. Gašper Tkačik schlägt Ružičková ein neues statistisches Modell vor. Dieses könnte dabei helfen „polygene Krankheiten“ zu analysieren, bei denen viele Regionen im Genom zu einer Fehlfunktion beitragen, und zu verstehen, warum die identifizierten genomischen Regionen zu diesen Krankheiten beitragen. Dazu kombinierten die Forschenden Genomanalysetechniken mit Erkenntnissen der Grundlagenbiologie. Die Forschungsergebnisse wurden in der Fachzeitschrift PNAS veröffentlicht.

„Da Gene miteinander verbunden sind, kann sich eine Mutation in einem Gen auf andere Gene auswirken. Die Wirkung der Mutation kann sich so über das regulatorische Netzwerk ausbreiten“, so Ružičková. Aufgrund dieser Netzwerke tragen letztendlich viele Gene im Regulationssystem zu einer Krankheit bei. Bislang wurde dieses Modell jedoch nicht mathematisch formuliert und blieb eine konzeptionelle Hypothese, die schwer zu testen war. In ihrer aktuellsten Arbeit stellen Ružičková und ihre Kollegen eine neue mathematische Formalisierung namens „quantitatives omnigenes Modell“ (QOM) vor.

Statistik und Biologie kombinieren

Um das Potenzial von QOM zu demonstrieren, mussten die Forschenden das Modell auf ein gut charakterisiertes biologisches System anwenden. Sie entschieden sich für das im Labor übliche Hefemodell Saccharomyces cerevisiae, besser bekannt als Bier- oder Bäckerhefe. Es handelt sich um einen einzelligen Eukaryoten, d. h. seine Zellstruktur ähnelt der von komplexen Organismen wie dem Menschen. „In der Hefe haben wir ein recht gutes Verständnis davon, wie die regulatorischen Netzwerke, die die Gene miteinander verbinden, strukturiert sind“, erklärt Ružičková.

Mithilfe ihres Modells konnten die Wissenschafter zwei Sachen vorhersagen. Erstens, das Ausmaß der Genexpression – die Intensität der Genaktivität, die angibt, wie viel Information der DNA aktiv genutzt wird – und zweitens, wie sich Mutationen im regulatorischen Netzwerk der Hefe ausbreiten. Die Vorhersagen waren äußerst effizient: Das Modell identifizierte nicht nur die relevanten Gene, sondern konnte auch eindeutig feststellen, welche Mutation am wahrscheinlichsten zu einem bestimmten Ergebnis beigetragen hat.

Puzzlestücke polygener Krankheiten

Das Ziel der Wissenschaftler bestand nicht darin, die Standard-GWAS in der Vorhersageleistung zu übertreffen, sondern vielmehr darin, eine andere Richtung einzuschlagen, indem sie das Modell interpretierbar machten. Während ein Standard-GWAS-Modell wie eine „Black Box“ funktioniert und eine statistische Erklärung dafür liefert, wie häufig eine bestimmte Mutation mit einer Krankheit verbunden ist, bietet das neue Modell auch einen kausalen Mechanismus für die Kette von Ereignissen, wie diese Mutation zu einer Krankheit führen kann.

In der Medizin hat das Verständnis der biologischen Zusammenhänge enorme Auswirkungen auf die Suche nach neuen Behandlungsansätzen. Obwohl das Modell derzeit noch weit von einer medizinischen Anwendung entfernt ist, hat es das Potenzial, mehr über polygene Krankheiten preiszugeben. „Wenn man genügend Wissen über die regulatorischen Netzwerke hat, könnte man ähnliche Modelle auch für andere Organismen erstellen. Wir haben uns die Genexpression in Hefe angesehen – ein erster Schritt und Beweis für das Prinzip. Jetzt, wo wir wissen, was möglich ist, kann man über Anwendungen in der Humangenetik nachdenken“, sagt Ružičková abschließend.