Schlüsselmechanismen für die Regeneration von Nervenzellen identifiziert6. August 2024 Epigenetische Modifikationen spielen bei der neuronalen Reprogrammierung eine wichtige Rolle. (Foto: © comicsans – stock.adobe.com; generiert mit KI) Forschende von LMU und Helmholtz Munich zeigen, wie Gliazellen mithilfe epigenetischer Modifikationen zu Neuronen umprogrammiert werden. Neurologische Erkrankungen wie Trauma, Schlaganfall, Epilepsie und verschiedene neurodegenerative Erkrankungen führen häufig zu einem dauerhaften Verlust von Nervenzellen, was zu erheblichen Beeinträchtigungen der Gehirnfunktion führt. Die derzeitigen Behandlungsmöglichkeiten sind begrenzt, weil es immer noch eine Herausforderung ist, verloren gegangene Nervenzellen zu regenerieren. Die neuronale Reprogrammierung, ein komplexes Verfahren, bei dem ein Zelltyp in einen anderen umgewandelt wird, bietet hier eine vielversprechende Strategie. In Zellkultur und in lebenden Organismen können Gliazellen erfolgreich in funktionelle Neuronen umgewandelt werden. Die an dieser Umprogrammierung beteiligten Prozesse sind jedoch komplex und noch nicht ausreichend verstanden. Diese Komplexität stellt eine Herausforderung, aber auch eine Motivation für Forschende auf dem Gebiet der Neurowissenschaften und der regenerativen Medizin dar. Umstrukturierung des Epigenoms Zwei Teams, eines unter der Leitung von Prof. Magdalena Götz, Inhaberin des Lehrstuhls für Physiologische Genomik an der LMU, Direktorin des Instituts für Stammzellforschung bei Helmholtz Munich und Mitglied im Exzellenzcluster SyNergy, und das andere unter der Leitung von Dr. Boyan Bonev am Helmholtz Pioneer Campus, haben die molekularen Mechanismen untersucht, mit denen Gliazellen mithilfe eines einzigen Transkriptionsfaktors in Neuronen umgewandelt werden. Dabei konzentrierten sich die Forschenden auf epigenetische Veränderungen. Mithilfe neuartiger Methoden der Epigenomprofilierung deckten die Forschenden auf, dass eine posttranslationale Modifikation des reprogrammierenden neurogenen Transkriptionsfaktors Neurogenin2 die epigenetische Umstrukturierung und die neuronalen Reprogrammierung maßgeblich beeinflusst. Allerdings genügt der Transkriptionsfaktor allein nicht, um die Gliazellen umzuprogrammieren: Die Forschenden identifizierten ein neuartiges Protein, den Transkriptionsregulator YingYang1, als Schlüsselfaktor für diesem Prozess. YingYang1 ist notwendig, um das Erbgut für die Umprogrammierung zu öffnen, und interagiert dafür mit dem Transkriptionsfaktor. „Das Protein Ying Yang 1 ist entscheidend, um die Umwandlung von Astrozyten in Neuronen zu erreichen”, erklärt Götz. „Diese Erkenntnisse sind wichtig, um die Reprogrammierung von Gliazellen zu Neuronen zu verstehen und zu verbessern, und bringen uns damit therapeutischen Lösungen näher.“
Mehr erfahren zu: "DMKG: Moderne Migränetherapien werden zu wenig genutzt" DMKG: Moderne Migränetherapien werden zu wenig genutzt Seit Jahren sind wirksame und gut verträgliche Migräneprophylaktika verfügbar, deren Anwendung auch von der aktuellen S1-Leitlinie empfohlen wird. Doch viele Menschen mit schwerer Migräne erhalten diese Medikamente erst spät. Das […]
Mehr erfahren zu: "Experte für Gedächtnisforschung zum Honorarprofessor der Universität Magdeburg ernannt" Experte für Gedächtnisforschung zum Honorarprofessor der Universität Magdeburg ernannt Als Honorarprofessor stärkt Dr. Michael Kreutz die Lehre und Forschung im Bereich der Neurowissenschaften an der Medizinischen Fakultät der Otto-von-Guericke-Universität Magdeburg.
Mehr erfahren zu: "Streeck warnt vor leichter Zugänglichkeit von Drogen" Streeck warnt vor leichter Zugänglichkeit von Drogen „Per Taxi ins Jugendzimmer“: Der Bundesdrogenbeauftragte sieht die leichte Verfügbarkeit von Rauschgift als große Gefahr. Eine Droge bereitet ihm besonders große Sorgen.