Studie: RPTU-Forschende entschlüsseln molekulare Mechanismen in Krebszellen14. Februar 2025 Die Massenspektrometrie, die für die Bestimmung der zellulären Proteinzusammensetzung essentiell ist, spielte bei diesem Projekt eine entscheidende Rolle. Hier untersuchen Professorin Zuzana Storchová und Doktorand Jan-Eric Bökenkamp entsprechende Daten. Foto: ©RPTU, Thomas Koziel Krebszellen verfügen über spezielle Anpassungsmechanismen, die es ihnen erlauben, trotz Veränderungen in ihrem Erbgut zu wuchern. Forschende der Rheinland-Pfälzischen Technischen Universität Kaiserslautern-Landau (RPTU) haben nun zur Aufklärung der damit einhergehenden molekularen Mechanismen beigetragen. Veränderungen von Chromosomen können schwerwiegende Folgen für die betroffenen Zellen haben – und lassen sich unter anderem bei Krebserkrankungen feststellen. Wie es zu solchen Veränderungen kommen kann und was genau die damit einhergehenden Folgen sind, erforscht Prof. Zuzana Storchová, Leiterin des Lehrbereichs Molekulare Genetik an der RPTU. Dies macht sie mit Hilfe eines Teams von Forschenden, dem auch der Doktorand Jan-Eric Bökenkamp angehört – dieser konkretisiert: „Wir erforschen die genetischen Merkmale von Krebszellen und ihre molekularen Eigenschaften sowohl experimentell als auch durch computergestützte Analyse.“ Etwa 90 Prozent der Tumore bestehen aus aneuploiden Zellen Im Rahmen einer aktuell erschienenen Veröffentlichung im „EMBO Journal“ haben die Forschenden nun ein häufiges genetisches Merkmal von Krebszellen unter die Lupe genommen – die Aneuploidie. „Wenn eine Zelle aneuploid ist, weist sie einen veränderten Satz an Chromosomen auf“, erklärt Storchová. Ein bekanntes Beispiel für Aneuploidie sei bei Menschen mit Downsyndrom zu finden, die mit Trisomie 21 eine zusätzliche Kopie des 21. Chromosoms in sich tragen. „Ein weniger bekannter Fakt ist, dass etwa 90 Prozent der Tumoren von Krebspatientinnen und -patienten ebenfalls aus aneuploiden Zellen bestehen und dabei meistens weitaus mehr als nur ein Chromosom gleichzeitig betroffen ist.“ Da Aneuploidie in gesunden Zellen das Wachstum verlangsamt und oft zum Zelltod führt, sei eine bedeutende Frage der Krebsforschung, warum und wie Krebszellen mit dieser genetischen Belastung nicht nur überleben, sondern auch noch wuchern können. Im Labor haben die Forschenden um Storchová deshalb Zellen genetisch manipuliert, sodass diese eine zusätzliche Kopie eines Chromosoms in sich tragen, also aneuploid sind. Bökenkamp: „Die dadurch belasteten Zellen haben wir sich über längere Zeit vermehren lassen und festgestellt, dass sie nach mehreren Wochen deutlich besser wachsen.“ Die Forschenden haben eine Vielzahl unterschiedlicher experimenteller Messreihen durchgeführt, um die molekularen Mechanismen zu verstehen, die eine solche Anpassung aneuploider Zellen ermöglicht. Methoden der modernen Biotechnologie und Bioinformatik, wie die Next-Generation-DNA-Sequenzierung und die Massenspektrometrie, kamen zum Einsatz. Erstes Labor, das die Anpassung von Krebszellen an extra Chromosomen untersucht Storchová hebt die Besonderheit der Untersuchungen hervor: „Unsere Studie zeichnet sich dadurch aus, dass wir als erstes Labor ein Modellsystem entwickelt und analysiert haben, mit dem wir die Anpassung menschlicher Krebszellen an die anhaltende Präsenz bestimmter extra Chromosomen untersuchen konnten.“ Die Forschenden haben zudem öffentliche Beobachtungsdaten tausender Tumoren mit aneuploiden Zellen von Krebspatientinnen und -patienten aus US-basierten Datenbanken analysiert, „um diese mit den experimentellen Daten unserer aneuploiden Modellzellen zu vergleichen und die klinische Relevanz unserer Ergebnisse zu stützen“, fügt Bökenkamp hinzu. Über drei Wege: Krebszellen passen sich der Präsenz zusätzlicher Chromosomen an Zusammenfassend lässt sich sagen, dass die Forschenden drei Wege identifizieren konnten, mit deren Hilfe sich Krebszellen an die Präsenz zusätzlicher Chromosomen anpassen: Erstens erhöhen sie die Stabilität ihres Genoms durch eine Zunahme an Faktoren der DNA-Replikation und DNA-Reparatur, und verringern den Abbau von Genprodukten. Zweitens erhöhten sie die Aktivität des Zellwachstums- und -teilungsfaktors FOXM1. Drittens verlieren sie bestimmte Teile der zusätzlichen DNA, auf denen tumorunterdrückende Gene kodiert sind (Tumorsuppressoren), während sie die Teile beibehalten, auf denen sich wachstumsfördernde Gene befinden. Aufbauend auf diesen Erkenntnissen, so schlussfolgern die Forschenden, lassen sich neue Therapieansätze und Medikamente entwickeln − Ansätze, die gezielt genau solche molekularen Vorgänge hemmen, die es Krebszellen ermöglichen, trotz weitreichender Genomveränderungen zu wachsen und zu wuchern. Besonders die Rolle von FOXM1 stellt ein attraktives Ziel dar, da dessen Potenzial für Krebsmedikamente bereits seit mehreren Jahren erforscht wird.
Mehr erfahren zu: "Neue Studie: weitaus weniger Mikroorganismen in Tumoren als bisher angenommen" Weiterlesen nach Anmeldung Neue Studie: weitaus weniger Mikroorganismen in Tumoren als bisher angenommen Ein Forschungsteam der Johns Hopkins University (USA) hat herausgefunden, dass sequenzierte Tumorproben deutlich weniger mikrobielles Erbgut aufweisen, das tatsächlich mit einer bestimmten Krebsart assoziiert ist, als bisher angenommen. Bisherige Ergebnisse […]
Mehr erfahren zu: "Genetische Schwachstelle bei Synovialsarkomen erkannt" Genetische Schwachstelle bei Synovialsarkomen erkannt Neue Forschungsergebnisse zeigen, dass der Einsatz eines kleinen Moleküls als Blocker zur Hemmung des SUMO2-Proteins eine erfolgreiche Strategie gegen Synovialsarkome sein könnte.
Mehr erfahren zu: "KI in der Medizin: Wie Patienten darüber urteilen" KI in der Medizin: Wie Patienten darüber urteilen Was denken Patienten über Künstliche Intelligenz (KI) in der Medizin? Eine internationale Studie liefert eine Antwort. Zentrales Ergebnis: Je schlechter der eigene Gesundheitszustand, desto eher wird der Einsatz von KI […]