Technisch imitiert: Das Prinzip der optischen Täuschung8. August 2018 Marina Ignatov, Doktorandin der Elektrotechnik und Erstautorin der Publikation, zeigt eine elektronische Schaltung, mit der Wahrnehmungsprozesse des menschlichen Gehirns nachgebildet werden können. Foto/©: Julia Siekmann, CAU Um die Prozesse bei der Informationsverarbeitung im Gehirn nachzuvollziehen, hat ein Kieler Forschungsteam einen elektronischen Schaltkreis aus Oszillatoren entwickelt und so das Prinzip der optischen Täuschung imitiert. Damit wir uns in unserer Umgebung zurechtfinden und schnelle Entscheidungen treffen können, muss das menschliche Gehirn in kurzer Zeit viele Informationen verarbeiten. Wie genau es den gigantischen Datenstrom beherrscht, den unsere Sinnesorgane liefern, ist noch nicht vollständig erforscht. Um die Funktionsweise des Gehirns besser zu verstehen, wollen Forschende der Christian-Albrechts-Universität zu Kiel die biologische Informationsverarbeitung technisch nachbilden. Anhand optischer Täuschungen haben sie gezeigt, wie sich Wahrnehmungsprozesse in einem Schaltkreis aus nanoelektronischen Bauelementen simulieren lassen. Wie sich mit einem elektrischen Schaltkreis Wahrnehmungsprozesse imitieren lassen, zeigen besonders gut optische Täuschungen – also Bilder, die für unsere Sinne widersprüchlich sind. Eine optische Täuschung liefert sogenannte „konkurrierende Informationen“, die für unser Gehirn zunächst nicht zusammenpassen. Daran lässt sich gut nachvollziehen, wie unser Gehirn Informationen verknüpft. Fehler bei optischen Täuschungen zu erkennen, sei für den Menschen eher schwierig, erklärt PD Martin Ziegler aus der Arbeitsgruppe „Nanoelektronik“ an der Technischen Fakultät der CAU. Denn in der Regel erstelle das Gehirn automatisch ein korrektes Bild. Der Mensch brauche sinnvolle Informationen, um schnell Entscheidungen treffen zu können. Der Schlüssel, um beide Lesarten eines Täuschungbildes zu sehen, ist Aufmerksamkeit. Es ist eines der zentralen Prinzipien, nach dem unser Gehirn arbeitet. Denn das, worauf wir unsere Wahrnehmung fokussieren, formt unser Bild der Realität. Bei solchen Wahrnehmungsprozessen spielt auch die Häufigkeit eine Rolle, mit der wir bestimmte Muster erkennen. Warum können wir Objekte wahrnehmen? Hinter dem Forschungsinteresse an optischen Täuschungen steckt eine zentrale Frage der Neurowissenschaften, die auch als Bindungsproblem bezeichnet wird: Wie konstruiert unser Gehirn aus einer Vielzahl von Sinneseindrücken eine einheitliche Wahrnehmung und erkennt somit zum Beispiel Objekte? Elektrische Impulse übermitteln laufend Informationen zwischen den Neuronen im Gehirn. Dort sind jeweils eigenständige Netzwerke zum Beispiel für Sehen, Hören oder Fühlen zuständig. Um Dinge bewusst wahrnehmen zu können, müssen unterschiedliche Hirnareale Information austauschen und sich immer wieder neu miteinander verknüpfen. Dazu synchronisiert sich die Aktivität der Neuronen, sie laufen also im Gleichtakt. Sichtbar machen lässt sich dies beim Menschen über eine Hirnstrommessung (Elektroenzephalographie, EEG). „Synchronizität ist als Funktionsprinzip des Gehirns bereits bekannt. Aber wir wissen noch nicht genau, wie unser Gehirn seine verschiedenen Bereiche verknüpft und damit seine Subnetzwerke immer wieder ändert“, erläutert Prof. Hermann Kohlstedt, Leiter der Arbeitsgruppe Nanoelektronik. Es wird vermutet, dass Faktoren wie Aufmerksamkeit, die wir auf bestimmte Objekte unseres Wahrnehmungsbereichs richten, zur Verknüpfung von Informationen führen. Biologische Prozesse elektrisch nachgebildet Um die Prozesse bei der Informationsverarbeitung im Gehirn nachzuvollziehen, entwickelte das Kieler Forschungsteam einen elektronischen Schaltkreis aus Oszillatoren. Diese Schaltung erzeugt periodische Spannungsimpulse in Echtzeit und funktioniert damit ähnlich wie Neuronen im Gehirn. Die Forschenden verwendeten spezielle nanoelektronische Bauelemente, mit denen sich die Oszillatoren verknüpfen und somit synchronisieren lassen. Diese Bauelemente werden als „Memristoren“ bezeichnet (von englisch „memory“ für Gedächtnis und „resistor“ für Widerstand). Sie sind in der Lage, elektrische Zustände zu speichern, ähnlich der Prozesse im Gehirn, die beim Verknüpfen von Informationen ablaufen. „Die Häufigkeit der elektrischen Impulse, denen wir die Memristoren aussetzen, ist dabei mit der Aufmerksamkeit im menschlichen Wahrnehmungsprozess gleichzusetzen. Je höher die Anzahl der Impulse, desto höher die Wahrscheinlichkeit, dass eine Verbindung zwischen den künstlichen Nervenzellen entsteht“, erklärt Mirko Hansen, Doktorand in der Arbeitsgruppe Nanoelektronik und Co-Autor der Publikation. Über die Memristoren lässt sich die Intensität dieser Verbindungen steuern. Damit ändern sie die Verknüpfungen im elektronischen Netzwerk, ähnlich wie die sich ständig anpassenden Synapsen zwischen den Subnetzwerken im Gehirn. Die Arbeit ist entstanden im überregionalen Verbundforschungsprojekt „Memristive Bauelemente für neuronale Systeme“ (Forschungsgruppe 2093), das von der Deutschen Forschungsgemeinschaft (DFG) gefördert wird. Hier arbeiten Wissenschaftlerinnen und Wissenschaftler aus Physik, Elektrotechnik, Materialwissenschaft und Medizin zusammen. „Unser langfristiges Ziel ist es, höhere Gehirnfunktionalitäten nachzubilden, die sogenannte kognitive, elektronische Systeme ausbilden. Dies können zum Beispiel selbstlernende Systeme sein, die in ferner Zukunft sogar so etwas wie Empathie entwickeln können“, sagt Kohlstedt, Sprecher der Forschungsgruppe 2093. Originalpublikation: DOI: 10.1126/sciadv.1700849 http://advances.sciencemag.org/content/3/10/e1700849 Quelle: Christian-Albrechts-Universität zu Kiel
Mehr erfahren zu: "Glaukom: Gängige Augensalben können Implantate schädigen" Weiterlesen nach Anmeldung Glaukom: Gängige Augensalben können Implantate schädigen Anhand klinischer und experimenteller Belege zeigt eine neue Studie der Nagoya-Universität (Japan), dass Augensalben auf Petrolatum-Basis ein bestimmtes Drainage-Implantat beeinträchtigen können.
Mehr erfahren zu: "Demenz vorbeugen: Warum Hörgerät und Brille wichtig fürs Gehirn sind" Demenz vorbeugen: Warum Hörgerät und Brille wichtig fürs Gehirn sind Was haben Hörgerät und Brille mit Demenzprävention zu tun? Mehr, als viele denken. Die gemeinnützige Alzheimer Forschung Initiative (AFI) zeigt, warum unbehandelte Hör- und Sehschwächen das Demenzrisiko erhöhen können – […]
Mehr erfahren zu: "Biosensoren: Mit leuchtenden GPCRs Licht ins Dunkel bringen" Biosensoren: Mit leuchtenden GPCRs Licht ins Dunkel bringen Einem Forschungsteam der Universitätsmedizin Mainz ist es gelungen, erstmals in lebenden Zellen zu beobachten, wie G-Protein-gekoppelte Rezeptoren auf Wirkstoffe reagieren.