Thalamus: Kartierung der Kommunikationszentrale des Gehirns10. November 2022 Medizinisches MRT-Gerät. Foto.© MPI für biologische Kybernetik Der Thalamus ist trotz seiner wichtigen Rolle noch längst nicht vollständig verstanden. Forscher des Max-Planck-Instituts für biologische Kybernetik in Tübingen haben nun Beziehungen des Thalamus zu anderen Gehirnarealen untersucht und konnten den verschiedenen Teilen des Thalamus ihre jeweiligen Aufgaben zuzuordnen. Die Ergebnisse der statistischen Analysen der Wissenschaftler, veröffentlicht in der Fachzeitschrift Communications Biology, könnten zur Entwicklung gezielterer Therapien für Krankheitsbilder wie Parkinson oder Epilepsie beitragen. Tief im menschlichen Gehirn liegt eine Region, die man mit einem Großflughafen vergleichen kann: der Thalamus. Er empfängt und verteilt Signale von den Sinnesorganen und von überall im Gehirn. Alle visuellen Eindrücke beispielsweise kommen zuerst im Thalamus an, von wo aus sie anschließend an die Gehirnareale geschickt werden, die sie weiterverarbeiten – ähnlich wie Flugreisende aus unterschiedlichen Städten und mit unterschiedlichen Reisezielen oft am selben Großflughafen umsteigen müssen. Allerdings ist unsere Kenntnis darüber, welche Teile des Thalamus bei welcher Gehirnfunktionen eine Rolle spielen, bislang noch sehr lückenhaft. Der Thalamus – ein flexibles GehirnarealEin Forscherteam des Max-Planck-Instituts für biologische Kybernetik hat nun begonnen, diese Lücken zu füllen und den Thalamus zu kartieren. Dabei stellte sich heraus, dass viele der Untereinheiten des Thalamus sich ihre Aufgaben untereinander teilen. „Wir nennen dieses Phänomen funktionale Multiplizität“, erläutert Vinod Kumar, Hauptautor der Studie. „Man kann es mit der Funktionsweise einer CPU vergleichen. Ob man ein Spiel oder eine Office-Anwendung auf dem Computer ausführt – alles muss in der CPU verarbeitet werden – und der CPU ist es egal, welche Art Programm läuft; sie stellt ihre Berechnung für die Anwendung an, die sie gerade benötigt.“ Doch die Flexibilität des Thalamus reicht noch weiter, denn er ist auch in höhere Gehirnfunktionen involviert. Die Bandbreite dieser höheren Hirnleistungen ist groß: Vom Arbeitsgedächtnis über Entscheidungsfindung bis hin zu Impulskontrolle spielt der Thalamus eine Rolle. Üblicherweise bringt man diese höheren Funktionen eher mit der Hirnrinde in Verbindung, der äußeren Schicht des Gehirns, die sich evolutionär recht spät bei Menschen und anderen Säugetieren entwickelt hat. „Was wir über die Weiterleitungs-Nuklei im visuellen Thalamus herausgefunden haben, stimmt mit neueren Beobachtungen in der Literatur zu Tieren überein“, kommentiert Kumar. „Es war aber bemerkenswert, dies beim Menschen beobachten zu können.“ Statistische Analysen von 3,5 Millionen HirnscansDie Wissenschaftler erzielten ihre Ergebnisse durch statistische Analysen von 3,5 Millionen Hirnscans von 730 Versuchspersonen aus der Forschungsdatenbank Human Connectome Project. Die Bilder waren mithilfe von funktioneller Magnetresonanztomographie (fMRT) generiert worden. Bei dieser nichtinvasiven Methode wird neuronale Aktivität indirekt sichtbar gemacht, indem die Anteile von sauerstoffreichem und sauerstoffarmem Blut bestimmt werden. Da aktive Neuronen mit Blut versorgt werden müssen, kann man mit dieser Methode ein Bild erstellen, in dem aktive Hirnregionen aufleuchten, während relativ inaktive Regionen dunkel bleiben. Selbst dann, wenn eine Versuchsperson gerade keine Aufgabe ausführt, kann man auf diesen sogenannten funktionellen Ruhe-MRTs wichtige Verbindungen innerhalb des Gehirns erkennen. Die Forscher ergänzten ihre Analysen durch Daten von 14 371 fMRT-Studien, bei denen die Probanden während des Scans Aufgaben ausführen sollten. Ein entscheidender Faktor für den Erfolg war, dass die Fragestellung des Teams – welche Teile des Thalamus stehen mit welchen Aufgaben in Verbindung? – für die Hirnrinde bereits detailliert beantwortet ist. Daher ließen die in den fMRI-Scans erkennbaren Verbindungen zwischen den verschiedenen Regionen des Thalamus und der Hirnrinde Rückschlüsse zu auf die Aufgaben der Thalamus-Regionen. So lassen etwa ausgeprägte Verbindungen von einer bestimmten Thalamus-Region zu einem Schmerzverarbeitungsnetzwerk in der Hirnrinde erkennen, dass diese Thalamus-Region in Zusammenhang mit Schmerz steht. Große Bandbreite möglicher klinischer AnwendungenDie neuen Erkenntnisse über die Funktionsweise des Thalamus könnten in der Zukunft relevant für viele klinische Anwendungen werden. Denn schließlich sind Verletzungen des Thalamus für eine Vielzahl von Erkrankungen ursächlich, darunter Sinnesstörungen, Gedächtnisprobleme, Parkinson, Epilepsie und Handtremor. Bereits jetzt behandeln Neurochirurgen solche Krankheiten durch sogenannte Tiefe Hirnstimulation. Dabei werden bestimmte Gehirnareale des Thalamus elektrisch stimuliert, um beispielsweise die Symptome von Parkinson oder medikationsresistenter Epilepsie zu lindern. Andere mögliche klinische Anwendungen sind transkranielle Gleichstromstimulation und transkranielle Magnetstimulation, beides nichtinvasive Verfahren zur Behandlung einer Vielzahl neurologischer und psychischer Erkrankungen. „Dank unseres neuen Verständnisses der funktionalen Multiplizität in den Thalamus-Nuklei können wir klinische Störungen interpretieren“, sagt Kumar. „Wir könnten zum Beispiel besser verstehen, warum ein Parkinsonpatient unter Behandlung mit Tiefer Hirnstimulation im Thalamus unter bestimmten Nebenwirkungen leidet.“ Er hofft, dass dieses Wissen dabei hilft, derartige Interventionen gezielter so zu gestalten, dass ihre Wirkungen maximiert und ihre Nebenwirkungen reduziert werden.
Mehr erfahren zu: "Kommen E-Patientenakten jetzt voll auf Touren?" Kommen E-Patientenakten jetzt voll auf Touren? Die allermeisten Versicherten haben inzwischen einen digitalen Speicher für Gesundheitsdaten – und Ärztinnen und Ärzte müssen sie in wenigen Tagen auch immer befüllen. Wird das dann rasch zum Alltag?
Mehr erfahren zu: "Fake-Tipps auf Tiktok: Ärzte warnen vor gefährlichen Trends" Fake-Tipps auf Tiktok: Ärzte warnen vor gefährlichen Trends Wie gefährlich können Gesundheits-Influencer sein? Experten warnen vor Desinformation und fordern strengere Regeln auf Instagram und Tiktok.
Mehr erfahren zu: "Keine Auszeit für Krebszellen" Keine Auszeit für Krebszellen Eine von Max-Planck-Chemikern entwickelte neuartige Substanz stört die Stressbewältigung von Krebszellen.