Visuelle Wahrnehmung: Auf den Rhythmus kommt es an10. März 2022 Ähnlich wie ein Funkempfänger, der Radiosender anhand unterschiedlicher Frequenzen unterscheidet (rechts unten), differenzieren höhere Hirnbereiche die Quelle eines eingehenden Nervensignals aus einem niedrigeren Hirnbereich anhand der Frequenz. Abb.: © Deutsches Primatenzentrum Auf das Wesentliche konzentrieren – diese Fähigkeit ist entscheidend, um in einer komplexen Umwelt mit unzähligen Sinneseindrücken zurechtzukommen. Aber wie gelingt es unserem Gehirn, zwischen relevanten und irrelevanten Informationen zu unterscheiden? Dass unterschiedliche Frequenzen, mit denen Nervenzellen im Gehirn feuern, bei der Informationsselektion eine Rolle spielen, ist seit längerem bekannt. Wissenschaftler vom Deutschen Primatenzentrum – Leibniz-Institut für Primatenforschung in Göttingen und von der Universität Melbourne, Australien, haben Studien zu diesem Thema kritisch überprüft. Sie fanden heraus, dass Verbindungen zwischen niedrigeren und höheren Schwingungsfrequenzen für die Feinabstimmung im Gehirn sorgen und damit die Grundlage sind für höhere kognitive Funktionen, wie beispielsweise selektive Aufmerksamkeit.Kein Flackern, kein Rauschen: Wir sehen ein solides Bild unserer Umwelt. Aber dieser Eindruck trügt, unsere Wahrnehmung schwankt mehrmals pro Sekunde zwischen hochpräzisen und unpräzisen Zuständen. Ursache für diese Fluktuationen sind rhythmische elektrische Aktivitäten im Gehirn, die sich zwischen einem und 250 Hertz bewegen. Mithilfe dieser unterschiedlichen Frequenzen reguliert das Gehirn, wie Informationen zwischen verschiedenen Hirnregionen übertragen werden. Neurowissenschaftler vom Deutschen Primatenzentrum und der Universität Melbourne haben aus Studien zu diesem Thema abgeleitet, wie das Zusammenspiel der unterschiedlichen Frequenzen grundlegende Wahrnehmungsprozesse im Gehirn steuert.Frequenzübergreifende Kopplung ermöglicht selektive AufmerksamkeitEin grundlegendes, in allen Hirnregionen beobachtetes Phänomen ist, dass langsame Rhythmen von ungefähr vier bis acht Hertz die Stärke von schnelleren Rhythmen von ungefähr 40 bis 80 Hertz modulieren. Dies nennt man frequenzübergreifende Kopplung. Welche Frequenzpaare gekoppelt sind, hängt vom jeweiligen Hirnareal und seiner Funktion ab. In einigen Fällen führt Aufmerksamkeit dazu, dass die Nervenzellen de-synchronisiert werden und so unterschiedliche Informationen weiterleiten können. Dies ist mit einem Orchester vergleichbar, bei dem ein Streichinstrument eine andere Melodie spielt als das restliche Ensemble. In anderen Fällen kann Aufmerksamkeit dazu führen, dass eine große Anzahl von Nervenzellen gleichzeitig aktiviert wird und so bestimmte Informationen betont werden. „Wir gehen davon aus, dass diese beiden Funktionen durch frequenzübergreifende Kopplung der Nervenzellen im Gehirn organisiert werden“, sagt Moein Esghaei, Neurowissenschaftler und einer der Autoren der Studie.Verschiedene Arten von Informationen unterscheidenDas gleichzeitige Vorhandensein mehrerer Frequenzbänder im Gehirn hilft auch dabei, verschiedene Arten von Informationen, die in derselben Hirnregion ankommen, zu unterscheiden. Zum Beispiel Farbe und Richtung eines Drachenfliegers. „Unser Gehirn leitet Informationen über Farbe und Bewegungsrichtung über verschiedene Frequenzen an höhere Gehirnbereiche weiter. Dies ist vergleichbar mit einem Funkempfänger, der Radiosender anhand unterschiedlicher Frequenzen unterscheidet“, sagt Esghaei.„Die rhythmische Aktivität der neuronalen Netzwerke im Gehirn spielt eine entscheidende Rolle bei der visuellen Wahrnehmung bei Menschen und anderen Primaten“, sagt Stefan Treue, Leiter der Abteilung Kognitive Neurowissenschaften am Deutschen Primatenzentrum. „Zu wissen, wie genau diese Aktivitätsmuster interagieren und gesteuert werden, hilft uns dabei, die neuronalen Grundlagen von Wahrnehmung zu verstehen und Defizite bei neurologischen Erkrankungen wir Legasthenie, ADHS und Schizophrenie aufzuklären.“Originalpublikation:Moein Esghaei, Stefan Treue, Trichur R. Vidyasagar. Dynamic coupling of oscillatory neural activity and its roles in visual attention. Trends in Neurosciences 2022.doi: https://doi.org/10.1016/j.tins.2022.01.003
Mehr erfahren zu: "Glaukom: Gängige Augensalben können Implantate schädigen" Weiterlesen nach Anmeldung Glaukom: Gängige Augensalben können Implantate schädigen Anhand klinischer und experimenteller Belege zeigt eine neue Studie der Nagoya-Universität (Japan), dass Augensalben auf Petrolatum-Basis ein bestimmtes Drainage-Implantat beeinträchtigen können.
Mehr erfahren zu: "Demenz vorbeugen: Warum Hörgerät und Brille wichtig fürs Gehirn sind" Demenz vorbeugen: Warum Hörgerät und Brille wichtig fürs Gehirn sind Was haben Hörgerät und Brille mit Demenzprävention zu tun? Mehr, als viele denken. Die gemeinnützige Alzheimer Forschung Initiative (AFI) zeigt, warum unbehandelte Hör- und Sehschwächen das Demenzrisiko erhöhen können – […]
Mehr erfahren zu: "Biosensoren: Mit leuchtenden GPCRs Licht ins Dunkel bringen" Biosensoren: Mit leuchtenden GPCRs Licht ins Dunkel bringen Einem Forschungsteam der Universitätsmedizin Mainz ist es gelungen, erstmals in lebenden Zellen zu beobachten, wie G-Protein-gekoppelte Rezeptoren auf Wirkstoffe reagieren.