Welche Rolle spielen die verschiedenen Hirnhautschichten bei der MS?

(v.l.) Prof. Alexander Flügel, Dr. Arianna Merlini, Prof. Francesca Odoardi und Michael Haberl (Quelle: umg/imsf/omar diaz)

Wissenschaftler des Instituts für Neuroimmunologie und Multiple-Sklerose-Forschung der Universitätsmedizin Göttingen haben entdeckt, dass krankmachende Immunzellen die inneren Schichten der Hirnhäute nutzen, um in das Nervensystem einzudringen und eine zerstörerische Entzündung auszulösen. 

Die Hirnhäute sind am Krankheitsprozess der Multiplen Sklerose (MS) wesentlich beteiligt. Sie dienen nämlich nicht nur als Eintrittspforte für die zerstörerischen Immunzellen in das Gehirn, sondern sind auch der Ort, an dem die Zellen den Angriff auslösen und dauerhaft weiterführen. Welche Rolle hierbei die verschiedenen Schichten der Hirnhäute spielen, war bislang unklar.

Ein Team von Forschern am Institut für Neuroimmunologe und Multiple-Sklerose-Forschung der Universitätsmedizin Göttingen (UMG) konnte jetzt zeigen: Unter den Hirnhäuten gibt es eine eindeutige Rollenverteilung beim Krankheitsprozess der MS. Überraschenderweise sind nahezu ausschließlich die inneren, dem Gehirn anliegenden Schichten der Hirnhäute an dem Autoimmunangriff auf das Gehirn beteiligt. Die äußere, eigentlich „immunfreundliche“, harte Hirnhaut (Dura), ist dagegen vom Entzündungsprozess praktisch ausgeschlossen.

Bedeutung der Ergebnisse und Ausblick für eine mögliche Therapie der MS

„Diese Forschungsergebnisse sind bedeutsam für unser Verstehen darüber, wie Autoimmunprozesse ausgelöst werden“, sagt Prof. Francesca Odoardi. „So zeigt das Verhalten der krankheitsauslösenden T-Zellen in den Blutgefäßen der verschiedenen Hirnhautschichten sehr deutlich: Die Durchlässigkeit des Blutgefäßes ist für die Anheftung und Durchwanderung von T-Zellen nicht ausschlaggebend. Entscheidend ist vielmehr das Vorhandensein passender Adhäsionsmoleküle, mit denen T-Zellen sich an der Gefäßwand anheften können“, erklärt Odoardi weiter.

Die Ergebnisse der Studie liefern auch neue Einblicke über die Barrierefunktion des Zentralnervensystems. Fresszellen der weichen Hirnhäute scheinen danach sehr effektiv zu gewährleisten, dass Hirneiweiße oder deren Bruchstücke vor Ort aufgenommen und „entsorgt“ werden. Sie gelangen nicht in die harte Hirnhaut und nicht über deren lymphatischen Gefäße in die Lymphknoten. „Die Verteilung von Hirneiweißen ist somit zumindest im gesunden Zustand strikt auf das Gehirn und die unmittelbar angrenzenden Hirnhäute beschränkt. Die weichen Hirnhäute dienen offensichtlich als eine Art Filter, der die Weiterleitung von freigesetzten Hirneiweißen beschränkt“, sagt Odoardi. Dadurch ist das Gehirn weniger „sichtbar“ für das Immunsystem und somit normalerweise auch besser vor Autoimmunreaktionen geschützt.

„Im Krankheitsfall werden dann auch in erster Linie die weichen Hirnhäute und das angrenzende Hirngewebe durch die Autoimmunentzündung betroffen“, sagt Prof. Alexander Flügel. „Therapeutische Bemühungen, eine Autoimmunentzündung einzudämmen, sollten daher besonders auf die weichen Hirnhäute und das Hirngewebe gerichtet sein. Die harte Hirnhaut und deren lymphatischen Gefäße sollten dagegen nicht als vorrangiges Ziel angesehen werden“.

Dass die äußere harte Hirnhaut beim Entzündungsprozess praktisch keine Rolle spielt, liegt den neuen Erkenntnissen zufolge vor allem an zwei Besonderheiten der weichen Hirnhautschichten: Die selbstzerstörerischen Immunzellen kleben besser an Blutgefäßen der weichen Hirnhäute als an denen der harten Hirnhaut. Daher können die Zellen dort auch leichter aus dem Blut auswandern und in das angrenzende Hirngewebe eindringen. Zudem erhalten die krankmachenden Immunzellen ausschließlich in den weichen Hirnhäuten die entscheidenden Signale, die sie dazu aufstacheln, den selbstzerstörerischen Angriff auf das Gehirn zu starten.

Immuneigenschaften der Hirnhäute unterscheiden sich grundlegend

Die Ergebnisse der Studie seien überraschend, so die Forscher. Der Aufbau und die Eigenschaften der verschiedenen Hirnhäute ließen auf den ersten Blick eine gegenteilige Beteiligung von weichen und harten Hirnhäuten erwarten. Im Gegensatz zu den weichen Hirnhäuten kann die harte Hirnhaut (Dura) nämlich als „immunfreundlich“ angesehen werden: Die Blutgefäße in der harten Hirnhaut weisen Fenster auf, sie lassen Zellen und lösliche Bestandteile des Bluts leichter durch. Lymphatische Gefäße dienen zusätzlich als Drainagen. Überflüssiges Gewebewasser und Abfallprodukte können so aus dem Gewebe in angrenzende Lymphknoten abgeführt werden. Spezialisierte Fresszellen kontrollieren die Abfallprodukte und schlagen sofort Alarm, wenn ein potenzieller Gefahrstoff in die Lymphknoten drainiert wird. Lymphatische Gefäße werden von Immunzellen als Straßen genutzt, um aus dem Gewebe in ihr natürliches Zuhause, die Lymphknoten, zu gelangen. Aus immunologischer Sicht könnte daher die harte Hirnhaut als eine Art Drehscheibe für Immunprozesse des Gehirns funktionieren.

„Hier sollten Immunzellen also eigentlich ohne Probleme durch die löchrigen Blutgefäße einwandern können. Gewebewasser und lösliche Bestandteile können in im Halsbereich liegende Lymphknoten drainiert und dort kontrolliert werden. Schließlich können auch die in die Dura eingewanderten Immunzellen, nachdem sie ihre Kontrollgänge absolviert haben, über die lymphatischen Gefäße wieder in die Lymphknoten zirkulieren“, sagt Dr. Arianna Merlini, die Erstautorin der Publikation. Die Blutgefäße der weichen Hirnhäute dagegen sind ähnlich wie die des Hirngewebes durch starke Abdichtungen versiegelt. Durch das Fehlen eines lymphatischen Gefäßsystems ist keine Verbindung zum Immunsystem der Lymphknoten vorhanden.

Krankheitsauslösende T-Zellen bevorzugen die weichen Hirnhäute

Warum funktioniert der beschriebene Immunkreislauf der Dura bei Autoimmunprozessen des Gehirns offensichtlich nicht? Das Forscherteam aus Göttingen fand heraus, dass für die Autoimmunentzündung im Gehirn besondere Regeln herrschen. Diese werden durch die Eigenschaften der krankheitsauslösenden Immunzellen, sogenannter selbstreaktiver T-Zellen, bestimmt.

„Diese Zellen richten sich bei ihrem Austritt aus den Blutgefäßen erstaunlicherweise nicht nach deren Durchlässigkeit. Sie suchen stattdessen geeignete Andockstellen im Gefäß“, sagt Odoardi. Als „Poller“ für die T-Zellen dienen dabei spezielle Eiweiße, sogenannte Adhäsionsmoleküle. Sie ermöglichen das Anheften der T-Zellen und den anschließenden Durchtritt aus dem Blutgefäß. Die Forscher stellten fest, dass diese Adhäsionsmoleküle in den Gefäßen der weichen Hirnhaut deutlich häufiger zu finden sind als in der harten Hirnhaut.

Allerdings fanden die Göttinger Forscher noch einen weiteren Grund dafür, warum die selbstzerstörerischen T-Zellen die harte Hirnhaut mieden. Nach dem Durchtritt aus dem Blutgefäß müssen T-Zellen im Gewebe Instruktionen durch vor Ort sitzende Fresszellen erhalten, um aktiv werden zu können. „Diese Instruktionen werden durch spezielle Antennen der Fresszellen vermittelt. Diese präsentieren den T-Zellen Bruchstücke von gefressenen und teilverdauten Eiweißen“, erklärt Flügel.

Was bedeutet das für die Autoimmunität im Gehirn? Die selbstzerstörerischen T-Zellen erkennen auf den Antennen lokaler Fresszellen Eiweißbruchstücke aus dem Hirngewebe. Darauffolgend werden sie aktiviert, d. h. sie werden in einen Erregungszustand versetzt, sondern entzündungsfördernde Botenstoffe ab und lösen damit die Autoimmunentzündung aus. Fehlen diese Instruktionen, bleibt konsequenterweise die T-Zellaktivierung aus, es werden keine weiteren Immunzellen herbeigelockt und es bildet sich auch keine Entzündungsreaktion.

Die Forscher entdeckten, dass selbstreaktive T-Zellen nur in den weichen Hirnhäuten diese alarmierenden Instruktionen durch dort sitzende Fresszellen bekommen. Die harte Hirnhaut besitzt zwar ebenfalls zahlreiche Fresszellen, aber diese Zellen waren nicht in der Lage, die selbstreaktiven T-Zellen zu erregen. „Offensichtlich haben daher Fresszellen der harten Hirnhaut keinen Zugang zu Eiweißen des Hirngewebes“, sagt Odoardi. Die Forscher konnten im Experiment dafür indirekt den Beweis bringen: Werden solche Eiweiße den Fresszellen der harten Hirnhaut künstlich zugeführt, können sie die T-Zellen aktivieren und es bildet sich dann auch eine starke Entzündung in der harten Hirnhaut.