Wie fehlerhafte mRNA erkannt und zerstört wird25. Mai 2022 Foto: domoskanonos/stock.adobe.com Zwei sich ähnelnde Proteine können beim Qualitäts-Kontroll-Mechanismus von fehlerhafter mRNA füreinander einspringen. Mit dieser Erkenntnis gelang es einem Forschungsteam nun die Aufgabenverteilung der Proteine neu zu definieren. Wissenschaftler um Prof. Niels Gehring am Institut für Genetik der Universität zu Köln haben zwei sich ähnelnde Proteine, UPF3A und UPF3B, untersucht, die am Qualitäts-Kontroll-Mechanismus „nonsense-mediated mRNA decay“ (kurz NMD) beteiligt sind. Ihre Ergebnisse zeigen, dass beide Proteine in der Abwesenheit des jeweils anderen dazu in der Lage sind, die Ausführung des NMD zu sichern, und somit zumindest teilweise gleiche Funktionen besitzen. Der Qualitäts-Kontroll-Mechanismus NMD verhindert, dass fehlerhafte mRNA weiter zu Proteinen verarbeitet wird, die wohlmöglich unerwünschte oder sogar giftige Wirkungen in unseren Zellen haben können. Der Artikel „Human UPF3A and UPF3B enable fault-tolerant activation of nonsense-mediated mRNA decay“ wurde in The EMBO Journal veröffentlicht. An dem NMD-Prozess sind viele verschiedene Proteine beteiligt. Es ist jedoch noch nicht vollständig verstanden, wie genau diese Proteine zusammenarbeiten, um die mRNA bei der Proteinherstellung zu kontrollieren. Zu den zwei Proteinen UPF3A und UPF3B wurden in den vergangenen Jahren mehrere Theorien geäußert, die teilweise widersprüchlich sind. Während UPF3B als NMD-aktivierender Faktor etabliert ist, wurde von UPF3A behauptet, es sei – trotz seiner Ähnlichkeit zu UPF3B – dessen Gegenspieler und damit ein Hemmer des mRNA Abbaus. Durch umfassende molekularbiologische Untersuchungen wie RNA-Sequenzierung, Massen-spektrometrie und CRISPR-Cas9 zeigte das Kölner Team, dass beide Proteine in der Lage sind die Qualitätskontrolle der mRNA zu aktivieren und somit fehlerhafte mRNA unschädlich zu machen. Zudem konnte das Team weiterhin die etablierte Funktion von UPF3B als sogenanntes „Brücken-Protein“ widerlegen. Die Hauptaufgabe von UPF3B war demnach, als Verbindung zweier Proteinkomplexe, also wie eine Brücke zwischen zwei Pfeilern, zu dienen, um somit die Erkennung von fehlerhaften mRNAs zu ermöglichen. Aber auch ohne die Interaktion mit einem der beiden Proteinkomplexe, also einem der Pfeiler – was eine Brücke zum Einstürzen bringen würde – ist das Protein UPF3B in der Lage seine normale Funktion auszuüben. Es scheint also noch eine Brücken-unabhängige Funktion auszuführen. „Wir wollten die Diskussion um die beiden UPF3-Proteine beenden und die Frage beantworten, ob sie die gleichen oder gegensätzliche Funktionen haben“, sagt Gehring. Die Ergebnisse liefern zudem neue Erkenntnisse über die Funktionen von UPF3B. „Diese Erkenntnisse sind wichtig, da bekannt ist, dass Menschen mit Lernschwierigkeiten in einigen Fällen Mutationen in dem Gen für das UPF3B Protein tragen. Wir hoffen durch die weitere Erforschung des Proteins UPF3B den Zusammenhang zu seiner Funktion im menschlichen Gehirn zu entschlüsseln. Aber dafür müssen wir zunächst verstehen, was genau die molekulare Aufgabe des Proteins ist.“
Mehr erfahren zu: "Nukleäre RNAs im Gehirn von Mäusen: Lebenslange Persistenz festgestellt" Nukleäre RNAs im Gehirn von Mäusen: Lebenslange Persistenz festgestellt RNA gilt allgemein als kurzlebiger Vermittler genetischer Informationen. Genomische DNA, die sich in den Kernen von Säugetierneuronen befindet, kann hingegen so alt sein wie der Organismus selbst.
Mehr erfahren zu: "Virale Artenvielfalt im Abwasser" Virale Artenvielfalt im Abwasser Umfassende Metagenom-Sequenzierungen des Berliner Abwassers über 17 Monate zeigen, dass man so die Ausbreitung von Krankheitserregern überwachen und Ausbrüche vorhersagen kann. Wie das Team um Markus Landthaler in „Environmental International“ […]
Mehr erfahren zu: "Neuzugang im CRISPR-Werkzeugkasten: Mit der Genschere RNA nachweisen" Neuzugang im CRISPR-Werkzeugkasten: Mit der Genschere RNA nachweisen Forschende des Würzburger Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) haben eine neue Technologie namens PUMA entwickelt, die mittels DNA-schneidenden Cas12-Nukleasen präzise RNA detektieren kann.