Zum Inhalt springen
Biermann Medizin
Profil: Anmeldung
  • Startseite
  • Fachbereiche

    • Allgemeinmedizin
    • Anästhesiologie & Intensivmedizin
    • Dermatologie & Allergologie
    • Diabetologie & Endokrinologie
    • Gastroenterologie
    • Gynäkologie
    • Aktuelle Rubrik: Hals-Nasen-Ohren
    • Kardiologie
    • Kinder- und Jugendmedizin
    • Aktuelle Rubrik: Labormedizin
    • Nephrologie
    • Neurologie & Psychiatrie
    • Onkologie
    • Aktuelle Rubrik: Ophthalmologie
    • Orthopädie / Unfallchirurgie
    • Pneumologie
    • Schmerztherapie
    • Urologie
    • Veterinärmedizin
  • Veranstaltungskalender

    • alle Veranstaltungen
    • Allgemeinmedizin
    • Anästhesiologie & Intensivmedizin
    • Dermatologie & Allergologie
    • Diabetologie & Endokrinologie
    • Gastroenterologie
    • Gynäkologie
    • Hals-Nasen-Ohren-Heilkunde
    • Kardiologie
    • Kinder- und Jugendmedizin
    • Labormedizin
    • Nephrologie
    • Neurologie & Psychiatrie
    • Onkologie
    • Ophthalmologie
    • Orthopädie & Unfallchirurgie
    • Pneumologie
    • Urologie
  • Mediadaten

    • Printmedien
    • Digitale Medien
    • Sonderformate und Technische Vorgaben
    • Mediadaten AGB
Hals-Nasen-Ohren › Medizin & Forschung › Wie Immunzellen Krankheitserreger „erschnüffeln“

Wie Immunzellen Krankheitserreger „erschnüffeln“

12. November 2024
Felicitas Lauber, Janine Holze und Günther Weindl (v.l.) von der Universität Bonn haben eine innovative Methode genutzt, um Immun-Rezeptoren bei der Arbeit zuzuschauen. Foto: Katrin Limani/Universität Bonn

Immunzellen können Infektionen wie ein Spürhund zu „erschnüffeln“, indem sie die Toll-like-Rezeptoren (TLR) nutzen. Doch durch welche Signale werden TLR aktiviert? Und wie hängen Ausmaß und Art der Aktivierung von der detektierten Substanz ab?

In einer aktuellen Studie haben Forschende der Universität Bonn und des Universitätsklinikums Bonn (UKB) eine innovative Methode genutzt, um diese Fragen zu beantworten. Ihr Ansatz könnte dabei helfen, die Suche von Wirkstoffen gegen Infektionskrankheiten, Krebs, Diabetes oder Demenz zu beschleunigen. Die Ergebnisse sind in der Zeitschrift Nature Communications erschienen.

Viele Zellen im Körper – vor allem solche in den Schleimhäuten und die des Immunsystems – tragen auf ihrer Oberfläche zahlreiche TLR. Diese funktionieren ähnlich wie die Riechrezeptoren in der Nase: Wenn sie auf ein spezifisches chemisches Signal stoßen, werden sie aktiviert. Der Alarm, den sie dabei auslösen, führt dann im Zellinnern zu einer Reihe von Reaktionen. Wenn Fresszellen ein Bakterium „erschnüffeln“, leiten sie zum Beispiel die Phagocytose ein, bei der sie den Erreger umfließen und verdauen. Andere Immunzellen schütten beispielsweise spezielle Botenstoffe aus und locken dadurch weitere Abwehrtruppen an, so dass eine Entzündung entsteht.

TLR werden durch Gefahrensignale aktiviert

Es gibt verschiedene Gruppen von TLR, die jeweils auf unterschiedliche „Gerüche“ ansprechen. „Dabei handelt es sich um Moleküle, die sich im Laufe der Evolution als wichtige Gefahrensignale herauskristallisiert haben“, erklärt Prof. Günther Weindl vom Pharmazeutischen Institut der Universität Bonn. Dazu gehören etwa Lipopolysaccharide, abgekürzt LPS – das sind wichtige Bestandteile der bakteriellen Zellwand.

„Noch nicht vollständig geklärt ist in vielen Fällen, zu welchen Antworten ein detektiertes Signal führt“, sagt Weindl, der auch Mitglied in den Transdisziplinären Forschungsbereichen (TRA) „Life & Health“ und „Sustainable Futures“ ist. „So ist es zum Beispiel denkbar, dass unterschiedliche Moleküle ein und denselben TLR stimulieren, dabei aber verschiedene Reaktionen auslösen.“

Normalerweise untersuchen Wissenschaftlerinnen und Wissenschaftler diese Frage mit farbig markierten Molekülen. Dadurch lässt sich beispielsweise sichtbar machen, wenn durch den Rezeptor ein bestimmter Signalweg angeschaltet wird, bei dem diese Moleküle eine wichtige Rolle spielen. Diese Methode ist jedoch sehr aufwändig und erfordert, dass man die Signalwege, die beeinflusst werden könnten, schon sehr gut kennt.

„Wir haben dagegen ein anderes Verfahren erprobt, das ohne Farbmarkierungen auskommt“, sagt Weindl. „Es wurde bereits erfolgreich zur Aufklärung der Arbeitsweise anderer Rezeptoren eingesetzt. Wir haben mit dieser Methode nun erstmals TLR untersucht.“ Das Verfahren basiert darauf, dass Zellen bei Kontakt zu einem Signalmolekül meist ihre Gestalt ändern. Dadurch bereiten sie sich etwa darauf vor, ein Bakterium zu „verschlucken“ oder in ein erkranktes Gewebe einzuwandern.

Wellenlängenänderung macht TLR-Aktivierung sichtbar

Diese Änderung der Gestalt lässt sich sehr einfach sichtbar machen. Dazu setzt man die Zellen auf eine speziell beschichtete transparente Platte und bestrahlt sie von unten mit einer Breitband-Lichtquelle. Dort, wo das Licht auf die Beschichtung trifft, werden bestimmte Bereiche (Wellenlängen) des Lichtspektrums zurückgestrahlt. Welche Wellenlängen zurückgeworfen werden, hängt von den Vorgängen und Veränderungen in der Zelle ab.

„Wir konnten zeigen, dass diese Änderungen der reflektierten Wellenlängen bereits wenige Minuten nach Zugabe des Signalmoleküls einsetzen“, sagt Weindls Mitarbeiterin Dr. Janine Holze. „Wir haben zudem Zellen mit Lipopolysacchariden aus E. coli und aus Salmonellen konfrontiert. Beide Zellwandkomponenten stimulieren denselben TLR. Dennoch veränderte sich das zurückgestrahlte Spektrum nach Gabe der E. coli-LPS auf andere Weise als nach Gabe des Salmonellen-Pendants.“ Das spricht dafür, dass ein und derselbe Rezeptor durch unterschiedliche Moleküle auf verschiedene Weisen aktiviert wird und dann je nach Signal spezifische Antworten auslöst.

„Das Verfahren erlaubt es daher, die Funktionsweise der Rezeptoren viel differenzierter aufzuklären als bislang“, betont Weindl. „Zudem vereinfacht es die Suche nach möglichen Medikamenten mit einem ganz bestimmten Wirkprofil.“ Mit ihnen ließe sich zum Beispiel die Immunreaktion verstärken, so dass die körpereigenen Abwehrtruppen Krebszellen wirksamer bekämpfen als bislang. Bei Erkrankungen wie Diabetes, Rheuma oder Alzheimer möchte man dagegen spezifische Aspekte der Immunantwort abschwächen, die ansonsten gesundes Gewebe schädigen können. Vielleicht bringt die neue Methode die Forschung auf diesem Weg einen Schritt weiter.

Förderung: Die Studie wurde durch die Deutsche Forschungsgemeinschaft (DFG) gefördert. Neben der Universität Bonn war auch das Universitätsklinikum Bonn (UKB) an der Studie beteiligt.

Teilen:
  • e-Mail
  • Drucken
  • Facebook
  • Twitter
  • LinkedIn
Quellen Rheinische Friedrich-Wilhelms-Universität Bonn, 12.11.2024Holze J et al. Label-free biosensor assay decodes the dynamics of Toll-like receptor signaling; Nature Communications 2024;15:article number Article number: 9554.
Schlagwörter
  • Toll-like-Rezeptor
  • Immunsystem

Verwandte Artikel

Mehr erfahren zu: "Weniger Verluste – Minister sieht Uniklinik Mainz auf gutem Weg"

Weniger Verluste – Minister sieht Uniklinik Mainz auf gutem Weg

Mit einem Bündel an Maßnahmen versucht die Uniklinik Mainz seit Jahren, aus den roten Zahlen zu kommen – und verbucht auch nach Meinung des Landes einen Teilerfolg.

Mehr erfahren zu: "EHDS und EU-HTA: Gesundheitsdaten und Arzneimittelbewertung vereinheitlichen"

EHDS und EU-HTA: Gesundheitsdaten und Arzneimittelbewertung vereinheitlichen

Die EU-Staaten rücken mit dem Start des Europäischen Gesundheitsdatenraums (EHDS) und des europäischen Nutzenbewertungsverfahrens (EU-HTA) zusammen. Experten diskutierten den Nutzen von EHDS und EU-HTA mit Blick auf den Datenschutz im […]

Mehr erfahren zu: "Neues Forschungsprojekt: Bessere Statistik für kleine Stichproben"

Neues Forschungsprojekt: Bessere Statistik für kleine Stichproben

Kleine Stichproben: Wie lassen sich trotzdem valide wissenschaftliche Ergebnisse gewinnen? Dieser Frage widmet sich das neue Projekt von Prof. Markus Neuhäuser, Professor für Statistik am Campus Remagen der Hochschule Koblenz.

  • Unternehmen
    • Wir über uns
    • Team
    • Die Geschichte
    • Karriere
  • Mediadaten
    • Printmedien
    • Digitale Medien
    • Sonderwerbeformen
    • Mediadaten AGB
  • Services
    • Kontakt
    • E-Paper
    • Newsletter
    • LinkedIn
  • Rechtliche Informationen
    • Impressum
    • AGB
    • Datenschutzhinweise
    • Hilfe/Kontakt
© Copyright 1984 - 2025, Biermann Verlag GmbH