DNA-Schere kann auch RNA zerschneiden2. März 2018 Würzburger Wissenschaftler haben nachgewiesen, dass eine Genschere aus dem Bakterium Campylobacter auch RNA schneiden kann. Das Bild zeigt Prof. Dr. Cynthia Sharma, Sara Eisenbart, Thorsten Bischler und Belinda Aul vom Institut für Molekulare Infektionsbiologie (IMIB) sowie Prof. Dr. Chase Beisel für RNA-basierte Infektionsforschung (HIRI). (Foto: Hilde Merkert, IMIB) Bakterien verfügen über ein Immunsystem namens CRISPR-Cas9, das fremde DNA eliminiert. Würzburger Forscher haben nun entdeckt, dass es auch RNA zerschneiden kann – ein Resultat mit potenziell weit reichenden Konsequenzen. Unsere Fähigkeit, den Inhalt von Genen nach Belieben zu verändern – sei es, um genetische Erkrankungen zu kurieren oder Agrarpflanzen zu verbessern – wird momentan revolutioniert. Angetrieben wird diese Revolution durch eine neuartige Technologie namens CRISPR-Cas9. Sie basiert auf einem Immunsystem von Bakterien. Dieses Abwehrsystem erkennt und zerschneidet fremdes Erbgut eindringender Viren und schützt die Bakterien so vor einer Infektion. Für das Einbringen des Schnitts ist dabei das Cas9-Protein zuständig, das als eine Art Schere fungiert. Andere Bestandteile des Systems leiten die Cas9-Schere zu der Stelle in der DNA, die zerschnitten werden soll. Wissenschaftler können diese Leitfunktion programmieren: Sie können dadurch gezielt bestimmte Gene modifizieren– nicht nur in Bakterien, sondern auch in Pflanzen und Tieren. Schere auf spezifische RNA-Moleküle programmiert Von den Cas9-Scheren weiß man, dass sie typischerweise DNA zerlegen. Wissenschaftler der Julius-Maximilians-Universität Würzburg (JMU) und des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI), einem Standort des Helmholtz-Zentrums für Infektionsforschung (HZI), konnten nun zeigen, dass die Cas9-Schere aus dem Lebensmittelkeim Campylobacter jejuni noch mehr kann. „Das Protein hat die Fähigkeit, neben DNA auch verwandte Moleküle zu zerschneiden – die Ribonukleinsäuren, kurz RNA“, betont Prof. Cynthia Sharma vom Institut für molekulare Infektionsbiologie (IMIB) der Universität Würzburg. „Nicht nur das: Wir konnten das Cas9-Protein so programmieren, dass es sich spezifisch gegen ausgewählte RNA-Moleküle richtet.“ Einsatzspektrum der Schere erweitert sich Dass die Cas9-Scheren auch RNA zerlegen können, erweitert ihr Einsatzspektrum. So lässt sich mit dieser Funktion möglicherweise besser kontrollieren, welche Gene an- oder abgeschaltet werden. Eventuell lassen sich mit ihr auch menschliche Viren bekämpfen, deren Erbgut aus RNA besteht, oder die Erreger einer Infektion schneller nachweisen. Die Wissenschaftler entdeckten die Eigenschaft der Genschere, als sie sich anschauten, welche Moleküle an das Cas9-Protein von Campylobacter binden. Darunter waren auch zahlreiche RNA. Weitere Analysen zeigten dann, dass das Cas9-Protein diese RNAs nicht nur binden, sondern auch in einer ähnlichen Weise wie DNA schneiden kann – und dass Cas9 so programmiert werden kann, dass sie sich gezielt gegen spezifische RNAs richtet. „Dieser Befund war erstaunlich, weil man bislang annahm, Cas9 könne normalerweise nur DNA zerlegen“, erklärt Prof. Chase Beisel. Beisel ist kürzlich von der NC State Universität in den USA an das HIRI gewechselt und hat in dem Projekt mit Prof. Sharma kooperiert. Möglicherweise ein generelles Merkmal der Scheren Die Cas9-Schere aus Campylobacter steht mit ihrer Fähigkeit, RNA zu schneiden, nicht allein: Zwei weitere Arbeitsgruppen haben kürzlich diese Eigenschaft auch bei den Cas9-Proteinen aus zwei anderen Bakterien nachgewiesen. Möglicherweise handelt es sich also um ein generelles Merkmal der Genscheren. Unbekannt ist bislang, inwieweit die Fähigkeit, RNA zu schneiden, für die Mikroorganismen von Nutzen ist. Es gibt jedoch zunehmend Hinweise darauf, dass das CRISPR/Cas-System nicht nur als Immunsystem dient: Möglicherweise reguliert es auch, welche Gene in Bakterien an- oder abgeschaltet werden. Originalpublikation: Dugar G et al. Molecular Cell 13.02.2018
Mehr erfahren zu: "Durch Alkohol verursachte Leberschäden: Sport und gute Ernährung vermitteln offenbar geringeres Mortalitätsrisiko" Durch Alkohol verursachte Leberschäden: Sport und gute Ernährung vermitteln offenbar geringeres Mortalitätsrisiko In einer neuen Studie haben Wissenschaftler untersucht, wie körperliche Aktivität und die Qualität der Ernährung mit unterschiedlichen Leveln und Mustern des Alkoholkonsums interagieren – mit dem Ergebnis, dass gesundes Essen […]
Mehr erfahren zu: "Exzessiver Alkoholkonsum: Gestörtes Protein-Recycling trägt zu MASLD bei" Exzessiver Alkoholkonsum: Gestörtes Protein-Recycling trägt zu MASLD bei US-Forschende haben herausgefunden, dass der Schlüssel für den Zusammenhang zwischen Alkoholmissbrauch und einer Stoffwechseldysfunktion-assoziierten steatotischen Lebererkrankung (MASLD) in einem Enzym liegt, das am Recycling unerwünschter Proteine beteiligt ist.
Mehr erfahren zu: "Neue Studie: weitaus weniger Mikroorganismen in Tumoren als bisher angenommen" Weiterlesen nach Anmeldung Neue Studie: weitaus weniger Mikroorganismen in Tumoren als bisher angenommen Ein Forschungsteam der Johns Hopkins University (USA) hat herausgefunden, dass sequenzierte Tumorproben deutlich weniger mikrobielles Erbgut aufweisen, das tatsächlich mit einer bestimmten Krebsart assoziiert ist, als bisher angenommen. Bisherige Ergebnisse […]