Jede einzelne Zelle zählt – schon vor der Geburt!7. Juni 2021 Professor Prinz, Dr. Fichtner und Professorin Ravens im MHH-Institut für Immunologie. © Karin Kaiser/MHH Ein Team des Exzellenzclusters RESIST zeigt, dass bestimmte Immunzellen früh im Leben entstehen und ein Leben lang bleiben. Manche Dinge sind besonders tief verwurzelt: So entstehen bestimmte weiße Blutkörperchen des erwachsenen Immunsystems bereits um die achte Schwangerschaftswoche. Es handelt sich dabei um gamma-delta T-Zellen, genauer dieVγ9Vδ2+ T-Zellen. Sie können bakterielle Infektionen sowie Gewebeschäden und -veränderungen wie zum Beispiel Krebs erkennen oder wirken als entzündungsverstärkende Zellen in Autoimmunerkrankungen. Sie kommen im Blut vor, aber auch im Darm, in der Haut, der Leber und der Lunge. Den frühen Ursprung dieser Immunzellen haben Professorin Dr. Sarina Ravens und Dr. Alina Fichtner vom Institut für Immunologie der Medizinischen Hochschule Hannover (MHH) sowie Professor Dr. Immo Prinz und Dr. Likai Tan vom Institut für Systemimmunologie der Universitätsklinik Hamburg-Eppendorf (UKE) nachweisen können. Sie kooperieren im von der MHH geleiteten Exzellenzcluster RESIST und veröffentlichten ihre Erkenntnisse in der wissenschaftlichen Fachzeitschrift „Science Immunology“. Gamma-delta T-Zellen werden nach den Proteinen auf ihrer Oberfläche (den T-Zell-Rezeptoren) benannt, mit denen sie Antigene erkennen können. Dabei besitzt jede einzelne dieser Zellen einen individuellen T-Zell-Rezeptor, wodurch ein hochdiverser T-Zell-Pool entsteht. „Um die Vielfalt der gamma-delta T-Zellen und ihrer Rezeptoren zu untersuchen, haben wir eine innovative Hochdurchsatz-Sequenzierungsmethode entwickelt, die auf der individuellen Analyse jeder einzelnen Zelle basiert“, sagt Professorin Ravens. Mit Hilfe dieser Technologie untersuchte das Team gamma-delta T-Zellen in Nabelschnurblutproben sowie aus Blutproben von Erwachsenen. „Interessanterweise entstehen bestimmte menschliche Vγ9Vδ2 T-Zellen ausschließlich in der sehr frühen Phase des Lebens, um zum Zeitpunkt der Geburt direkt einsatzbereit zu sein und anschließend als angeborene Immunzellen ein Leben lang im Menschen bestehen zu bleiben“, berichtet Dr. Fichtner. Erst vor kurzem konnte das Team zeigen, dass sich bestimmte gamma-delta T-Zellen direkt nach der Geburt expansiv vermehren und sie somit sehr wahrscheinlich wichtig für das frühkindliche Immunsystem sind. „Nun möchten wir herausfinden, wo diese hochfunktionellen und angeborenen gamma-delta T-Zellen im Körper zu finden sind und welche Rolle sie bei der Immunabwehr und Autoimmunerkrankungen spielen“, fügt Professor Prinz hinzu. Das langfristige Ziel der Wissenschaftlerinnen und Wissenschaftler ist, Grundlagen für optimierte Vorsorgen, Diagnosen und Therapien zu schaffen. RESIST – Forschen für die Schwächsten Im von der MHH geleiteten Exzellenzcluster RESIST (Resolving Infection Susceptibility) arbeiten rund 50 Forschungsteams an einem Ziel: Sie wollen es ermöglichen, dass besonders anfällige Menschen besser vor Infektionen geschützt werden können, beispielsweise Neugeborene. Zu RESIST gehören in der Klinik tätige Ärztinnen und Ärzte, denen die Situation der Patientinnen und Patienten sehr vertraut ist, sowie Grundlagenwissenschaftlerinnen und -wissenschaftler, die Krankheitserreger und deren Zusammenwirken mit dem Immunsystem bis ins kleinste Detail erforschen. RESIST besteht aus sechs Partner-Institutionen, Sprecher ist Professor Dr. Thomas Schulz, Leiter des MHH-Instituts für Virologie. Die Deutsche Forschungsgemeinschaft (DFG) fördert RESIST. Mehr Informationen über RESIST finden Sie unter http://www.RESIST-cluster.de
Mehr erfahren zu: "Stärkt der Duft von Tannennadeln die Immunabwehr?" Stärkt der Duft von Tannennadeln die Immunabwehr? Der Weihnachtsbaum im Wohnzimmer duftet nach frischem Wald und Natur. Der Duft von Tannennadeln sorgt bei vielen für ein Gefühl von Freude und Zufriedenheit. Doch beeinflussen ätherische Öle tatsächlich Gemüt […]
Mehr erfahren zu: "Schnellere Infektionsdiagnostik dank KI-gestützter Mikroskopie" Schnellere Infektionsdiagnostik dank KI-gestützter Mikroskopie Ein hochmodernes Mikroskop kombiniert Künstliche Intelligenz (KI) mit automatischer Bedienung und Bildanalyse. So sollen Mikroorganismen effizient erkannt und die mikrobiologische Diagnostik gerade in zeitkritischen Situationen optimiert werden.
Mehr erfahren zu: "Optimiertes Lichtblattmikroskop liefert bessere Bilder" Optimiertes Lichtblattmikroskop liefert bessere Bilder Lichtblattmikroskope machen Gewebe und ganze Organe dreidimensional sichtbar, etwa die filigrane Cochlea oder das Gehirn einer Maus. Bei größeren Proben stoßen herkömmliche Geräte an ihre Grenzen – bis jetzt.