Künstliche Intelligenz im Kampf gegen das Coronavirus16. Juli 2020 Im Kampf gegen das Coronavirus arbeiten THU u(v.l.) Doktorand Andreas Hinteregger (UKU), Facharzt Dr. Christopher Kloth (UKU), Prof. Dr. Meinrad Beer, Ärztlicher Direktor der Klinik für Diagnostische und Interventionelle Radiologie. © Universitätsklinikum Ulm Ein Notfallpatient mit Verdacht auf eine Coronavirus-Infektion trifft in einer Klinik ein. Für den weiteren Behandlungsverlauf ist die Einschätzung, ob es sich tatsächlich um eine COVID-19-Infektion handelt, essenziell. Dabei könnte in Zukunft Künstlicher Intelligenz (KI) eine wesentliche Rolle zukommen: Sie soll Mediziner bei der Ersteinschätzung der vorliegenden Erkrankung unterstützen. Im Rahmen eines gemeinsamen Projekts erforschen Wissenschaftlern des Universitätsklinikums Ulm und der Technischen Hochschule Ulm (THU), inwiefern sich mit Hilfe von Künstlicher Intelligenz und Röntgenaufnahmen der Lunge Aussagen über eine vorliegende Coronavirus-Infektion treffen lassen. „Unser Ziel ist es, die Künstliche Intelligenz so zu trainieren, dass sie feststellen kann, ob die Patientin oder der Patient an einer Lungeninfektion leidet, ob es sich dabei um COVID-19 handelt und falls ja, wie schwer die Infektion ist und welcher Teil der Lunge befallen ist“, erklärt Prof. Meinrad Beer, Ärztlicher Direktor der Klinik für Diagnostische und Interventionelle Radiologie am Universitätsklinikum Ulm. „Röntgenaufnahmen bieten bei der Versorgung von Lungeninfektionen wie COVID-19 große Vorteile. Sie sind schneller als die meisten anderen Verfahren, flexibel einsetzbar und nur mit einer geringen Strahlenexposition verbunden. Die Bildanalyse mittels Künstlicher Intelligenz wird diese Vorteile noch weiter verstärken zum Wohl unserer Patientinnen und Patienten“, so Beer weiter, der die Studie leitet. Für die Auswertung der Röntgenaufnahmen trainieren Prof. Reinhold von Schwerin und Doktorand Daniel Schaudt von der THU eine Künstliche Intelligenz, die mithilfe eines besonderen Deep Learning Verfahrens, dem sogenannten Transfer Learning, bereits mit wenigen Trainingsdaten vielversprechende Ergebnisse liefern kann. Bei dieser Technik werden vortrainierte vielschichtige (auch: tiefe) Netze, die bereits gelernt haben, welche Merkmale in einem Bild wichtig sind, auf ein spezielles Problem adaptiert. „Die stetig steigenden Möglichkeiten der durch Künstliche Intelligenz gestützten Bildanalyse sind auch auf Röntgenbilder anwendbar. Erste Versuche an der THU mittels Convolutional Neural Networks , einem speziellen, in der Bildanalyse häufig eingesetzten Deep Learning Verfahren, haben gezeigt, dass Künstliche Intelligenz eine erste Einschätzung über das Vorliegen einer Coronavirus-Erkrankung geben kann“, sagt von Schwerin. Für das Training der KI ist ein zeitnahes Heranziehen von anonymisierten Röntgenaufnahmen der Lunge von 1500 Patienten der Klinik für Diagnostische und Interventionelle Radiologie in den nächsten Monaten geplant. Bevor die KI mithilfe der Aufnahmen lernen kann, ist aber medizinisches Wissen gefragt. Die klinischen Informationen zu den Röntgenbildern sollen von Doktorand Andreas Hinteregger und Facharzt Dr. Christopher Kloth aus der Klinik für Diagnostische und Interventionelle Radiologie zusammengetragen werden. „Wir werden die Lungenkonturen und die Infiltrate, also die entzündlichen Veränderungen des Lungengewebes durch COVID-19 auf den Röntgenbildern einzeichnen, damit die Software daraus lernt und anschließend diese jeweils selbstständig erkennen kann“, erläutert Kloth. Schaudt beschäftigt sich bereits seit Ende 2019 mit dem Netzwerk, das nun zum Einsatz kommt. „Momentan prüfen wir, welche Möglichkeiten zur Strukturierung der Röntgenaufnahmen für das Training zielführend sind. Dazu zählt beispielsweise eine Strukturierung nach bestimmten Sektoren der Lunge. Wir hoffen so, den Infektionsherd einer COVID-19-bedingten Lungenentzündung genauer lokalisieren zu können“, erklärt der Informatiker. Mit ersten Ergebnissen rechnen die Wissenschaftler in den nächsten Monaten.
Mehr erfahren zu: "USA nicht mehr in der WHO: Weniger Geld, fehlende Expertise" USA nicht mehr in der WHO: Weniger Geld, fehlende Expertise Für den Chef der Weltgesundheitsorganisation gibt es durch den US-Austritt nur Verlierer. Was den USA und dem Rest der Welt abhandenkommt.
Mehr erfahren zu: "Neuer Bluttest zeigt Ausmaß der Hirnschädigung nach Schlaganfall" Neuer Bluttest zeigt Ausmaß der Hirnschädigung nach Schlaganfall Ein Schlaganfall ist ein medizinischer Notfall – doch das Ausmaß der fortschreitenden Hirnschädigung lässt sich bislang nur begrenzt erfassen. Forschende zeigen nun, dass ein neuer Blutmarker – Brain-derived Tau (BD-tau) […]
Mehr erfahren zu: "Kasse: Krankheitsausfälle im Job auch 2025 auf hohem Niveau" Kasse: Krankheitsausfälle im Job auch 2025 auf hohem Niveau Erkältungen, psychische Probleme, Rückenschmerzen: Fehlzeiten von Beschäftigten wegen Krankheit halten sich hartnäckig, wie neue Daten zeigen. Politiker stellen Regelungen wie die telefonische Krankschreibung infrage. Auch neue Modelle werden diskutiert.