Nahrungsaufnahme: Nach dem Schlucken kommt das Hochgefühl13. September 2024 Larven der Taufliege verfügen in der Speiseröhre (graue Struktur in der Mitte) über eine Art Dehnungs-Sensor, der Schluckvorgänge an das Gehirn meldet. Wurde Nahrung aufgenommen, schütten spezielle Neuronen (rot) Serotonin aus. (Abbildung: © Dr. Anton Miroschnikow/Uni Bonn) Forscher der Universitäten Bonn und Cambridge (Großbritannien) haben bei Fliegenlarven einen wichtigen Regelkreis für den Essvorgang identifiziert, den es wahrscheinlich in ähnlicher Weise auch beim Menschen gibt. Den Forschungsergebnissen zufolge verfügen Fliegenlarven in ihrer Speiseröhre über spezielle Sensoren. Diese schlagen an, sobald die Tiere etwas verschluckt haben. Wenn es sich dabei um Nahrung handelte, führt das im Gehirn zur Ausschüttung von Serotonin. Der Botenstoff sorgt dann dafür, dass die Larve den Essvorgang fortsetzt. Doch wie entsteht diese Wohlgefühl, das zu weiterer Nahrungsaufahme motiviert, genau? Welche neuronalen Schaltkreise sind dafür verantwortlich? „Auf diese Fragen liefert unsere Studie eine Antwort“, sagt Prof. Michael Pankratz vom LIMES-Institut (Life & Medical Sciences) der Universität Bonn.Ihre Einblicke gewannen die Forscher nicht am Menschen, sondern anhand von Larven der Taufliege Drosophila. Diese verfügen über etwa 10.000 bis 15.000 Nervenzellen ‒ im Vergleich zu den 100 Milliarden im menschlichen Gehirn eine überschaubare Zahl. Dennoch bilden schon diese 15.000 ein extrem komplexes Netzwerk: Jedes Neuron verfügt über sich verästelnde Ausläufer, über die es mit Dutzenden oder gar Hunderten anderen Nervenzellen in Kontakt tritt. Erstmals sämtliche Nervenverbindungen in Fliegenlarven untersucht „Wir wollten im Detail verstehen, wie das Verdauungssystem bei der Nahrungsaufnahme mit dem Gehirn kommuniziert“, erklärt Pankratz. „Dazu müssen wir wissen, über welche Neuronen dieser Informationsfluss läuft und wie sie verschaltet sind.“ Die Forscher haben daher den Verlauf sämtlicher Nervenfasern in den Larven analysiert, ebenso wie alle Verbindungen, die die Neuronen untereinander eingehen. Dazu zerschnitten sie eine Larve in Tausende hauchdünne Scheibchen, die sie dann unter dem Elektronenmikroskop fotografierten.„Diese Aufnahmen haben wir an Hochleistungs-Computern zu dreidimensionalen Bildern zusammengesetzt“, erläutert der Forscher, der auch Mitglied im Transdisziplinären Forschungsbereich „Life and Health“ und im Exzellenzcluster „Immunosensation” ist. Was danach folgte, war eine wahre Sisyphus-Arbeit: Die Projektmitarbeiter Dr. Andreas Schoofs und Dr. Anton Miroschnikow untersuchten die „Verdrahtung“ sämtlicher Nervenzellen untereinander ‒ Neuron für Neuron und Synapse für Synapse. Dehnungssensor ist mit Serotonin-Neuronen verkabelt Auf diese Weise konnten die Wissenschaftler eine Art Dehnungssensor in der Speiseröhre identifizieren. Dieser ist mit einer Gruppe von sechs Neuronen im Larvengehirn verkabelt, die dazu in der Lage sind, Serotonin herzustellen. Das sogenannte Glückshormon sorgt beispielsweise dafür, dass bestimmte Handlungen als belohnend empfunden werden, und motiviert zu deren Fortsetzung.Die Serotonin-Neuronen empfangen zusätzlich Informationen darüber, was die Tiere gerade verschluckt haben. „Sie erkennen also, ob es sich um Nahrung handelt oder nicht, und bewerten ihre Qualität“, erläutert Schoofs als Erstautor der Studie. „Nur wenn das Urteil positiv ausfällt, schütten sie Serotonin aus und sorgen so dafür, dass die Larven mit der Nahrungsaufnahme fortfahren.“Dieser Mechanismus ist von so grundlegender Bedeutung, dass es ihn wahrscheinlich auch beim Menschen gibt. Ist er gestört, kann das möglicherweise Essstörungen wie Magersucht oder Heißhunger-Attacken („Binge-Eating“) zur Folge haben. Eventuell können aus den Ergebnissen der Grundlagen-Studie daher auch Konsequenzen für die Behandlung dieser Erkrankungen erwachsen. „Noch wissen wir aber nicht genug darüber, wie dieser Schaltkreis im Menschen genau aussieht“, dämpft Pankratz hochgesteckte Erwartungen. „An diesem Punkt ist sicher noch jahrelange Forschungsarbeit nötig.“An der Studie waren die Universitäten Bonn und Cambridge (Großbritannien), der HHMI Janelia Research Campus (Ashburn, USA) sowie das Allen-Institute for Brain Sciences (Seattle, USA) beteiligt. Das Projekt wurde durch die Deutsche Forschungsgemeinschaft (DFG) gefördert.
Mehr erfahren zu: "Durch Alkohol verursachte Leberschäden: Sport und gute Ernährung vermitteln offenbar geringeres Mortalitätsrisiko" Durch Alkohol verursachte Leberschäden: Sport und gute Ernährung vermitteln offenbar geringeres Mortalitätsrisiko In einer neuen Studie haben Wissenschaftler untersucht, wie körperliche Aktivität und die Qualität der Ernährung mit unterschiedlichen Leveln und Mustern des Alkoholkonsums interagieren – mit dem Ergebnis, dass gesundes Essen […]
Mehr erfahren zu: "Exzessiver Alkoholkonsum: Gestörtes Protein-Recycling trägt zu MASLD bei" Exzessiver Alkoholkonsum: Gestörtes Protein-Recycling trägt zu MASLD bei US-Forschende haben herausgefunden, dass der Schlüssel für den Zusammenhang zwischen Alkoholmissbrauch und einer Stoffwechseldysfunktion-assoziierten steatotischen Lebererkrankung (MASLD) in einem Enzym liegt, das am Recycling unerwünschter Proteine beteiligt ist.
Mehr erfahren zu: "Neue Studie: weitaus weniger Mikroorganismen in Tumoren als bisher angenommen" Weiterlesen nach Anmeldung Neue Studie: weitaus weniger Mikroorganismen in Tumoren als bisher angenommen Ein Forschungsteam der Johns Hopkins University (USA) hat herausgefunden, dass sequenzierte Tumorproben deutlich weniger mikrobielles Erbgut aufweisen, das tatsächlich mit einer bestimmten Krebsart assoziiert ist, als bisher angenommen. Bisherige Ergebnisse […]