Parkinson: Radiotracer soll Differenzialdiagnostik erleichtern

An einem automatisierten Synthesemodul bereiten Dr. Rodrigo Teodoro (l.) und Dr. Thu Hang Lai das Ausgangsmaterial für den neuen Radiotracer vor. (Foto: HZDR/B. Tiedemann)

Ein interdisziplinäres Team des Instituts für Radiopharmazeutische Krebsforschung am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hat eine neue Substanz entwickelt, mit der die Bildgebung der Parkinson-Krankheit verbessert werden könnte.

Das vierköpfige Team, zu dem Dr. Thu Hang Lai, Dr. Rodrigo Teodoro und Dr. Magali Toussaint zählen, entdeckte einen stabilen Radiotracer, der an Rezeptoren in den Nervenbahnen des Gehirns andocken kann und sich dort nachweisen lässt. In klinischen Studien wollen sie nun überprüfen, ob sich die neue Substanz auch im medizinischen Alltag bewährt.

Ausgangspunkt für die Entwicklung war ein Forschungsprojekt, das die Arbeitsgruppe der HZDR-Abteilung „Neuroradiopharmaka“ am Standort Leipzig gemeinsam mit dem Universitätsklinikum Carl Gustav Carus, der TU Dresden und der Firma ROTOP Pharmaka im Jahr 2016 startete. Ziel des auf drei Jahre angelegten Projektes: Wie lässt sich die Differenzialdiagnostik der Parkinson-Krankheit mit nuklearmedizinischen Methoden verbessern? Bislang haben sich Mediziner bei der Diagnose bevorzugt auf Symptome, etwa bestimmte Bewegungsauffälligkeiten, verlassen.

Die klassische Therapie der Parkinson-Krankheit basiert auf der Gabe von Levodopa. Der Wirkstoff hat jedoch, besonders bei langjähriger Anwendung, deutliche Nebenwirkungen. „Für die Differenzialdiagnostik, um also für die Nebenwirkungen empfindliche Patienten frühzeitig zu erkennen, gibt es aber noch keine geeignete Methode“, erklärt die Chemikerin Thu Hang Lai. Ins Visier nahmen die Forscher die Rezeptoren von Adenosin, die neben anderen auf den Nervenbahnen des Gehirns vorhanden sind. Adenosin, das in seiner Struktur dem Koffein ähnelt, entsteht im Körper und in Nervenzellen als Botenstoff.

Radiotracer dockt an Adenosin-Rezeptoren im Gehirn an

Setzt es sich auf bestimmte Rezeptoren, führt es dazu, dass diese Nervenzellen langsamer arbeiten – darunter auch solche, die für die Parkinson-Krankheit bedeutsam sind. Der Ansatz des Teams war es deshalb, Radiotracer, also schwach radioaktiv markierte Substanzen, zu entwickeln, die im Gehirn an jene Rezeptoren andocken und damit deren Verfügbarkeit zum Beispiel für Therapiemaßnahmen anzeigen. An den Stellen des Gehirns, an denen eine erhöhte Radioaktivität gemessen wird, müssen also besonders viele Rezeptoren vorhanden sein. Der Nachweis erfolgt mit höchster Empfindlichkeit über eine Bildgebung mittels der Positronen-Emissions-Tomographie (PET).

Den Forschern gelang es, einen stabilen Radiotracer namens [18F]FLUDA zu entwickeln, der sich, ohne dass er auf dem Weg ins Gehirn einem Abbau unterliegt, an die Adenosin-Rezeptoren anlagert und dort nachweisen lässt. Nach Untersuchungen im Reagenzglas hat die Biologin Magali Toussaint den Radiotracer erfolgreich im Mausmodell getestet. Anschließend bewährte er sich auch in Dosimetrie- und Strahlenschutzstudien, die die Forscher zusammen mit der Klinik für Nuklearmedizin der Universität Leipzig durchführten, sowie in einer Toxizitätsstudie. „Mit einem entsprechenden, beim Menschen einsetzbaren Radiopharmakon hoffen wir, künftig die korrekte Differenzialdiagnose stellen und damit zwischen für Nebenwirkungen empfindlichen und unempfindlichen Parkinson-Patienten unterscheiden zu können“, gibt Rodrigo Teodoro, der im Team für die radioaktive Markierung verantwortlich ist, einen Ausblick.

Bis ein mögliches Medikament in die Kliniken kommt, dürften allerdings noch ein paar Jahre vergehen, schränkt der Chemiker ein. Denn die nächste Herausforderung wartet bereits auf das Team. Die Forscher wollen nun für das Radiopharmakon, für das sie ein Patent angemeldet haben, klinische Studien anschieben, in denen ihre Erfindung an Patienten und gesunden Probanden untersucht wird. Diese sind Voraussetzung für eine mögliche Arzneimittelzulassung. Derzeit sind sie noch auf der Suche nach einem klinischen Partner, um die Wirksamkeit und die Sicherheit zu validieren.