Rezeptorsignale in Nervenzellen steuern und sichtbar machen15. Februar 2019 Dennis Eickelbeck (l.) und Stefan Herlitze bringen Zellen zum Leuchten – mit der Optogenetik. Foto: © RUB, Marquard Mit einem neuen optogenetischen Werkzeug ist es Wissenschaftlern der Ruhr-Universität Bochum gelungen, die Signale von Serotoninrezeptoren in Nervenzellen zu steuern, nachzuahmen und sichtbar zu machen. Sie modifizierten dazu einen lichtempfindlichen Membranrezeptor aus dem Auge namens Melanopsin. Bei Melanospin handelt es sich um einen G-Protein-gekoppelten Rezeptor, der in Zellen bestimmte Signalwege steuern kann. Bereits in früheren Studien hatte das Bochumer Team vom Lehrstuhl für Allgemeine Zoologie und Neurobiologie den Rezeptor als optogenetisches Werkzeug eingesetzt. Die Biologen hatten den Rezeptor so verändert, dass er sich mit blauem Licht an- und mit gelbem Licht ausschalten ließ. Auf diese Weise konnten sie verschiedene G-Protein-gekoppelte Signalwege in Nervenzellen mit Licht aktivieren. In der aktuellen Studie entwickelten die Forscherinnen und Forscher das Werkzeug zu einem Sensor weiter, der anzeigt, ob ein G-Protein-gekoppelter Signalweg angeschaltet wurde. Der Trick: Ist ein solcher Signalweg aktiviert, steigt die Konzentration von Calcium-Ionen in der Zelle. Die Wissenschaftler verschmolzen das Melanopsin mit einem Calcium-Indikator-Protein, welches umso stärker grün fluoresziert, je höher die Calcium-Konzentration in der Zelle ist. Ein grünes Leuchten zeigte somit die Aktivierung eines G-Protein-gekoppelten Signalwegs an. Doppelter Farbcode Dann erweiterten die Biologen ihren Sensor – den Calcium-Melanopsin-lokal-Sensor, kurz Camello – noch um zwei weitere Funktionen. Sie bauten ein zweites Fluoreszenzprotein ein, das dauerhaft rot leuchtet. Anhand des roten Leuchtens konnten sie den Sensor in den Zellen lokalisieren, und zwar unabhängig davon, ob ein Signalweg angeschaltet war oder nicht. Ein rotes Leuchten bedeutete somit, dass der Camello-Sensor anwesend war, ein zusätzliches grünes Leuchten, dass er Signalwege aktiviert hatte. Rezeptor an bestimmte Bereiche transportieren Zuletzt fügten die Forscher ein Fragment eines Serotoninrezeptors zu Camello hinzu. Das sorgte dafür, dass der Sensor genau in die Bereiche der Zelle transportiert wurde, wo natürlicherweise Serotoninrezeptoren vorkommen. “Serotonin ist im Zentralnervensystem an vielen Prozessen beteiligt und somit auch in die Entstehung vieler Krankheiten involviert, etwa Depressionen, Schizophrenie, Angststörungen oder Migräne. Wir hoffen, dass unser Werkzeug künftig dazu beitragen kann, den Transport, die Lokalisation und die Aktivität beteiligter Rezeptoren genauer zu untersuchen, und es uns dadurch erlaubt wird, die zugrunde liegenden Mechanismen hinter diesen Krankheiten besser zu verstehen”, sagte Dennis Eickelbeck. Originalpublikation: Eickelbeck D. et al.: CaMello-XR enables visualization and optogenetic control of Gq/11 signals and receptor trafficking in GPCR-specific domains. Nature Communications Biology, 14. Februar 2019
Mehr erfahren zu: "Genetischer Risikofaktor und Virusinfektion tragen gemeinsam zur Multiplen Sklerose bei" Genetischer Risikofaktor und Virusinfektion tragen gemeinsam zur Multiplen Sklerose bei Multiple Sklerose wird durch eine Infektion mit dem Epstein-Barr-Virus mitverursacht. Daneben spielen aber auch bestimmte Genvarianten eine wichtige Rolle. Wie Forschende der Universität Zürich zeigen, führt erst das molekulare Zusammenspiel […]
Mehr erfahren zu: "Projekt für Umgang mit psychisch belasteten Schülern startet" Projekt für Umgang mit psychisch belasteten Schülern startet Verhaltensauffälligkeiten nehmen auch im Schulalltag zu. Nach langer Planung startet in Sachsen nun ein Projekt, das Lehrkräfte sowie Schulleitungen entlasten soll.
Mehr erfahren zu: "Pandemie-Folgen: Tausende Teenager mit Angststörungen und Panikattacken" Pandemie-Folgen: Tausende Teenager mit Angststörungen und Panikattacken Auch mehrere Jahre nach Ende der Corona-Pandemie prägt diese Zeit noch Tausende Teenager in Baden-Württemberg in Form psychischer Erkrankungen.