Stoffwechsel von Cholera-Bakterien: Kleine Moleküle mit Doppelrolle26. Oktober 2021 Elektronenmikroskopische Aufnahme eines Cholera-Erregers Vibrio cholerae (nachträglich koloriert). Foto: © Kai Papenfort/Liana Franke (Uni Jena) Ein Forschungsteam der Friedrich-Schiller-Universität Jena hat einen molekularen Mechanismus entschlüsselt, mit dem eine kleine RNA und ein kleines Protein den Stoffwechsel von Cholera-Bakterien und die Produktion des Cholera-Toxins regulieren. Wird die Darmflora gestört, etwa durch verunreinigtes Trinkwasser oder mit Keimen infizierte Nahrung, kann das Infektionskrankheiten zur Folge haben. Forscherinnen und Forscher des Exzellenzclusters „Balance of the Microverse“ der Friedrich-Schiller-Universität Jena untersuchen, wie es beispielsweise Cholera-Bakterien gelingt, das Darmgleichgewicht zu stören und zugleich ein krankmachendes Toxin zu produzieren. In der aktuellen Ausgabe des Fachmagazins „EMBO Journal“ stellen sie einen bisher unbekannten molekularen Mechanismus zur Produktion des Cholera-Toxins vor. Zentral dafür ist eine kleine Ribonukleinsäure (sRNA) sowie ein kleines Protein. „Kleine Ribonukleinsäuren und kleine Proteine wurden in der Vergangenheit häufig übersehen, spielen aber eine wichtige Rolle für die Physiologie von Mikroorganismen“, erläutert Prof. Kai Papenfort. „Die molekularen Mechanismen, mit denen diese kleinen Moleküle wirken, sind bislang nur unvollständig erforscht“, fährt der Professor für Allgemeine Mikrobiologie von der Universität Jena fort. Ribonukleinsäure greift zweifach in den Stoffwechsel des Cholera-Erregers ein Papenfort und sein Team konnten in der neuen Publikation zeigen, dass ein einzelnes RNA-Molekül mit dem Namen Vibrio cholerae dual RNA and protein (vcdRP), gleich doppelt in den Stoffwechsel des Cholera-Erregers eingreift und so dessen schädliche Wirkung steuert. „Zum einen inhibiert das in VcdRP enthaltene sRNA-Molekül die Produktion des Cholera-Toxins. Zum anderen nimmt diese kleine Ribonukleinsäure aber auch gleichzeitig selbst die Rolle einer Erbinformation ein und kodiert den Bauplan für ein kleines regulatorisches Protein“, sagt Papenfort. Dieses Protein wiederum aktiviert einen zentralen Stoffwechselweg, der Kohlenstoff aus der Nahrung in Energie und biosynthetische Bausteine, wie zum Beispiel Aminosäuren, umwandelt. „Unsere Arbeit zeigt, dass die Toxinproduktion und damit die krankheitsverursachenden Eigenschaften des Cholera-Bakteriums direkt an seinen Stoffwechsel gekoppelt sind“, macht Papenfort deutlich. Die Forschenden konnten damit erstmals eine sRNA mit einer solchen Doppelfunktion in Cholera-Bakterien identifizieren. Ihre Erkenntnisse wollen sie nutzen und neue Wege zur Bekämpfung von Cholera entwickeln. Gleichzeitig könnten die neuen Daten bei biotechnologischen Anwendungen mit Mikroorganismen von Nutzen sein, die denselben molekularen Mechanismus der RNA mit Doppelfunktion nutzen. Mit seiner Forschung unterstützt das Team um Papenfort das Ziel des Exzellenzclusters, grundlegende Mechanismen mikrobieller Gemeinschaften zu verstehen und innovative Therapieansätze zu entwickeln.
Mehr erfahren zu: "Durch Alkohol verursachte Leberschäden: Sport und gute Ernährung vermitteln offenbar geringeres Mortalitätsrisiko" Durch Alkohol verursachte Leberschäden: Sport und gute Ernährung vermitteln offenbar geringeres Mortalitätsrisiko In einer neuen Studie haben Wissenschaftler untersucht, wie körperliche Aktivität und die Qualität der Ernährung mit unterschiedlichen Leveln und Mustern des Alkoholkonsums interagieren – mit dem Ergebnis, dass gesundes Essen […]
Mehr erfahren zu: "Exzessiver Alkoholkonsum: Gestörtes Protein-Recycling trägt zu MASLD bei" Exzessiver Alkoholkonsum: Gestörtes Protein-Recycling trägt zu MASLD bei US-Forschende haben herausgefunden, dass der Schlüssel für den Zusammenhang zwischen Alkoholmissbrauch und einer Stoffwechseldysfunktion-assoziierten steatotischen Lebererkrankung (MASLD) in einem Enzym liegt, das am Recycling unerwünschter Proteine beteiligt ist.
Mehr erfahren zu: "Neue Studie: weitaus weniger Mikroorganismen in Tumoren als bisher angenommen" Weiterlesen nach Anmeldung Neue Studie: weitaus weniger Mikroorganismen in Tumoren als bisher angenommen Ein Forschungsteam der Johns Hopkins University (USA) hat herausgefunden, dass sequenzierte Tumorproben deutlich weniger mikrobielles Erbgut aufweisen, das tatsächlich mit einer bestimmten Krebsart assoziiert ist, als bisher angenommen. Bisherige Ergebnisse […]