Therapie der Muskeldystrophie rückt ein kleines Stück näher4. Mai 2021 Das konfokale Mikroskopbild zeigt die primären Muskelstammzellen des Patienten, die sich nach Reparatur der Mutation mittels “base editing” weiter vermehrt haben. (© AG Spuler, MDC/ECRC) Mit einer neuartigen Genschere wollen Forscher des Max-Delbrück-Centrums für Molekulare Medizin Mutationen an Muskelstammzellen korrigieren. Das könnte den Weg für die die erste mögliche Zelltherapie genetisch bedingter Muskelschwunderkrankungen ebnen. Ein Leben lang lassen sich Muskeln durch Training aufbauen und regenerieren. Möglich machen dies die Muskelstammzellen. Sind in ihnen jedoch bestimmte Gene mutiert, funktioniert das nicht – und es geschieht das Gegenteil. Bei Patienten, die an einer Muskeldystrophie leiden, schwindet die Skelettmuskulatur schon im Kindesalter. Sie können plötzlich nicht mehr rennen, Klavier spielen oder Treppen steigen. Und nicht selten sind sie bereits mit 15 Jahren auf den Rollstuhl angewiesen. Eine Therapie gibt es bisher nicht. „Bei diesen Patienten liegen Genmutationen vor, die nun mit der CRISPR-Cas9-Technologie zugänglich werden“, sagt Prof. Simone Spuler, Leiterin der Arbeitsgruppe Myologie am Experimental and Clinical Research Center (ECRC), einer gemeinsamen Einrichtung des Max-Delbrück-Centrums für Molekulare Medizin in der Helmholtz-Gemeinschaft und der Charité – Universitätsmedizin Berlin. „In der Muskelambulanz der Charité betreuen wir über 2000 Patienten. Wir haben rasch die Möglichkeiten der neuen Technologie erkannt und umgehend mit der Arbeit bei einigen betroffenen Familien begonnen.“ Geneditierte humane Muskelstammzellen werden in der Maus zu Muskelfasern Muskeldystrophien sind eine Gruppe von rund 50 verschiedenen Erkrankungen. „Sie nehmen alle den gleichen Verlauf, unterscheiden sich jedoch durch Mutation verschiedener Gene. Und an diesen Genen können wiederum verschiedene Stellen mutiert sein“, erklärt Spuler. Die Wahl der Forschenden fiel nach Genomanalyse aller Patienten auf eine Familie, weil deren Form der Erkrankung – die Limb-Girdle Muskeldystrophie 2D/R3 – relativ häufig ist, schnell fortschreitet und zudem nahe der Mutation an der DNA eine passende Andockstelle für die Genschere aufweist. Für die Studie entnahmen die Forscherinnen einem zehnjährigen Patienten Muskelgewebe, isolierten die Stammzellen daraus, vermehrten sie in vitro und tauschten mittels Base-Editing an der mutierten Stelle des Gens ein Basenpaar aus. Anschließend injizierten sie in Mausmuskeln, die fremde menschliche Zellen tolerieren können, die editierten Muskelstammzellen. Diese vermehrten sich im Nager und entwickelten sich zum größten Teil zu Muskelfasern weiter. „Wir konnten damit erstmals zeigen, dass es möglich ist, kranke Muskelzellen durch gesunde zu ersetzen“, betont Spuler. Nach weiteren Tests wird auch der Patient seine reparierten Stammzellen zurückerhalten. Base-Editing – eine raffinierte Methode Base-Editing ist eine neuere und sehr raffinierte Variante der CRISPR-Cas9-Technologie. Während bei der „klassischen“ Methode von der Genschere der DNA-Doppelstrang zerschnitten wird, zupfen die für das Base-Editing verwendeten Cas-Enzyme lediglich den Zuckerrest einer bestimmten Base ab und hängen einen anderen daran. Dadurch entsteht an dieser Stelle eine andere Base. „Es ist also eher eine Pinzette als eine Schere, perfekt geeignet für gezielte Punktmutationen an einem Gen. Das macht die Methode auch sehr viel sicherer, denn unerwünschte Veränderungen sind extrem selten. Bei den genreparierten Muskelstammzellen haben wir keinerlei Fehl-Editierung an unerwünschten Stellen des Genoms gesehen“, sagt Dr. Helena Escobar. Die Molekularbiologin aus Spulers Team ist Erstautorin der Studie und hat die Methode für die Muskelzellen entwickelt. Durch eine autologe Zelltherapie, bei der den Patienten ihre eigenen, zuvor editierten Stammzellen in den Muskel injiziert werden, werden Betroffene, die schon im Rollstuhl sitzen, nicht wieder gehen können. „Einen Muskel, der bereits abgebaut und durch Bindegewebe ersetzt wurde, können wir nicht mehr reparieren“, betont Spuler. Auch die Menge der Zellen, die in vitro editiert werden können, ist begrenzt. Die Studie zeigt jedoch erstmals auf, dass eine bisher unheilbare Gruppe von Erkrankungen überhaupt behandelt werden kann. Kleine Muskeldefekte, wie zum Beispiel am Fingerbeuger, könnten sich damit reparieren lassen. Heilende Behandlung rückt näher Doch dies ist nach Ansicht der Wissenschaftlerinnen nur der erste Schritt. „Der nächste Meilenstein wird sein, eine Möglichkeit zu finden, den Base-Editor direkt in den Patienten zu geben. Wo er dann für kurze Zeit durch den Körper schwimmt, alle Muskelstammzellen editiert und danach schnell wieder abgebaut wird“, erläutert Spuler. Die ersten Versuche im Mausmodell will das Team schon bald starten. Wenn auch das funktioniert, könnten künftig Neugeborene auf entsprechende Genmutationen untersucht werden. Die heilende Behandlung könnte dann zu einem Zeitpunkt beginnen, zu dem noch vergleichsweise wenige Zellen editiert werden müssen. Wie könnte eine In-vivo-Therapie für Muskeldystrophie konkret aussehen? Im Tiermodell versuche man das schon seit Längerem – mit viralen Vektoren. Da sie jedoch zu lange im Körper verbleiben, sei das Risiko von Fehl-Editierungen und toxischen Effekten zu groß, erklärt Escobar. „Eine Alternative wären mRNA-Moleküle, welche die Information für den Editor enthalten, um die Werkzeuge direkt in vivo zu synthetisieren. mRNA wird im Körper sehr schnell wieder abgebaut, sodass die therapeutischen Enzyme nur für kurze Zeit aktiv werden können“, sagt die Molekularbiologin. Vermutlich ließe sich die Behandlung sogar wiederholen, wenn nötig. „Ob ein Therapiezyklus aus mehreren Anwendungen erforderlich sein wird, wissen wir aber noch nicht.“ Anders als bei der autologen Zelltherapie, müsste dann auch nicht jede Patientin und jeder Patient ganz individuell behandelt werden. Für jede Form der Muskeltherapie würde ein „Werkzeug“ genügen, um den Muskelschwund zu heilen, noch bevor größere Beeinträchtigungen auftreten. Aber das ist noch Zukunftsmusik. Originalpublikation: Escobar H et al. Base editing repairs SGCA mutation in human primary muscle stell cells. JCI Insight 2021 Apr 13;145994.
Mehr erfahren zu: "Rauchverbot im Auto bei mitfahrenden Kindern: Bundesrat unterstützt Antrag auf Gesetzesänderung" Rauchverbot im Auto bei mitfahrenden Kindern: Bundesrat unterstützt Antrag auf Gesetzesänderung Kinder sollen nach dem Willen der Bundesländer in Deutschland künftig vor dem Passivrauchen im Auto geschützt werden. Dazu soll das Rauchen im Fahrzeug im Beisein Minderjähriger verboten werden. Der Bundesrat […]
Mehr erfahren zu: "Was bedeuten Trumps Zölle auf Arzneien für Deutschland?" Was bedeuten Trumps Zölle auf Arzneien für Deutschland? Trump verhängt Zölle auf Medikamente – ein Schlag für deutsche Pharmafirmen, die stark in die USA exportieren. Was heißt das für Patienten, die Knappheit bei manchen Arzneien und die Pharmabranche?
Mehr erfahren zu: "Entzündung spielt bei lebensgefährlicher Fehlbildung der Babylunge eine wichtige Rolle" Entzündung spielt bei lebensgefährlicher Fehlbildung der Babylunge eine wichtige Rolle Entzündungszellen spielen in den unterentwickelten Lungen von Kindern mit angeborener Zwerchfellhernie eine bisher unterschätzte Rolle. Das berichten Wissenschaftler der Kinderchirurgie der Universitätsmedizin Leipzig im „American Journal of Respiratory and Critical […]