Wegweiser für die Wundheilung: Erstmals Kleeblattpeptid synthetisiert7. Juli 2020 Studien haben gezeigt, dass Kleeblattpeptide vor allem bei Entzündungen und Verletzungen des Magen-Darm-Trakts lokal produziert werden, um die Wundheilung zu beschleunigen. (Foto: © Universität Wien) Die Familie der Kleeblattpeptide gilt in der Forschung wie auch Industrie als großer Hoffnungsträger, künftig chronische Erkrankungen wie zum Beispiel Morbus Crohn heilen zu können. Einem Team von der Universität Wien ist es nun erstmals gelungen, das vor allem in der Magenschleimhaut gebildete Peptid TFF1 zu synthetisieren. Die Forscher betrachten die chemische Synthese von Magen-Darm-Peptiden als wegweisenden Schritt, um ihre Wirkmechanismen besser verstehen und ihr therapeutisches Potenzial nutzen zu können. Die drei bekannten Kleeblattpeptide – Trefoil-Faktor-Peptide TFF1, TFF2 und TFF3 – werden vor allem von der Magen-Darm-Schleimhaut produziert. Die nach ihrer kleeblattähnlichen Faltstruktur benannten Moleküle haben klinisch interessante Eigenschaften: Studien haben gezeigt, dass diese Peptide vor allem bei Entzündungen und Verletzungen des Magen-Darm-Trakts lokal produziert werden, um die Wundheilung zu beschleunigen. Deshalb haben sie auch ein vielversprechendes therapeutisches Potenzial bei gastrointestinalen und anderen Schleimhauterkrankungen, etwa bei Augenleiden oder Asthma, wie das Team um Markus Muttenthaler in einem anderen Übersichtsartikel darlegt. Lokale Wirkung „Es gibt heute schon zwei Peptidmedikamente auf dem Markt, die oral gegen Erkrankungen wie etwa das Reizdarmsyndrom verabreicht werden können“, sagt Medizinchemiker Muttenthaler: „Da die Peptidmoleküle relativ groß sind, werden sie nicht über die Darmwand in die Blutbahn aufgenommen und wirken somit lokal im Magen-Darm-Trakt ohne größere Nebenwirkungen.“ Die Kleeblattpeptide sind ein zentraler Ausgangspunkt, „um neue Behandlungsstrategien für chronische Erkrankungen zu finden, wo es bis jetzt noch keine Heilung gibt“, so der Forscher, der Arbeitsgruppen am Institut für Biologische Chemie der Universität Wien sowie an der University of Queensland in Brisbane leitet. Die aktuellen Studien fanden im Rahmen von Muttenthalers ERC Starting Grant-Projekt statt, dessen Ziel es ist, die Mechanismen der Wundheilung im Magen-Darm-Trakt aufzuklären: „Mit der chemischen Synthese der TFF-Peptide können wir fundamentale Fragen beantworten, die wir vorher noch nicht beantworten konnten.“ TFF1 agiert im Doppelpack In ihrer Studie beschreiben die Forscher den chemischen Syntheseweg des Peptids TFF1 sowie seines Homodimers – also einem Molekül, das aus zwei gleichen TFF1-Untereinheiten besteht. Denn das Kleeblattpeptid TFF1 kann, wie die Studie ebenfalls zeigte, nur in dieser Art „Doppelpack“ seine Schutz- und Heilungsfunktion entfalten: In dieser Form vernetzt es Mucine, Struktur-Bestandteile der Magenschleimhaut, wodurch die Magenbarriere geschlossen und die Wundheilung beschleunigt wird. Eine große Herausforderung bei der TFF1-Synthese lag in der Länge des Kleeblattpeptids. Mit seinen 60 Aminosäuren ist es zu lang für eine einfache Peptidsynthese: „Wir haben einen Weg gefunden, das Peptid in zwei Teilen zu synthetisieren und anschließend zusammenzusetzen“, so Muttenthaler. Die zweite Herausforderung war es, die richtige Faltung des Peptids – aus einer Fülle von Möglichkeiten – herauszufinden. Das synthetisierte TFF1 war letztendlich das passende Schlüsselpeptid, um mit der Magenschleimhaut zu interagieren. Das Team um Muttenthaler arbeitet derzeit an der chemischen Synthese von TFF3, einem ähnlich langen Peptid wie TFF1, sowie von dem mit 106 Aminosäuren deutlich längeren und komplexer gefalteten TFF2. Synthese bringt Spielraum Die chemische Synthese der Kleeblattpeptide eröffnet mehr Spielraum beim Design dieser bioaktiven Moleküle: Bisher war es nur möglich, Kleeblattpeptide rekombinant zu produzieren. „Das Design dieser Peptide war damit durch die rekombinante Produktion auf die 20 natürlichen Aminosäuren limitiert. Mit der chemischen Synthese haben wir jetzt viel mehr Möglichkeiten TFF1 zu modifizieren, um molekulare Sonden zu entwickeln oder es für den Einsatz als Medikament zu optimieren“, so Muttenthaler. Molekulare Sonden sind wichtig, um den Wirkmechanismus von TFF1 besser untersuchen zu können. Eingebaute Bausteine im Molekülkomplex, zum Beispiel fluoreszierende Moleküle, helfen zu beobachten, mit welchen Proteinen oder Rezeptoren TFF1 in Wechselwirkung geht. Selbst an der schon relativ guten Stabilität der Peptide kann noch etwas gedreht werden, um sie beispielsweise als Wirkstoffe noch widerstandfähiger gegen eine zu schnelle Verdauung zu machen.
Mehr erfahren zu: "RegioOnkoNet: FZI überführt digitale Onkologie-Lösungen in die Versorgung auf dem Land" RegioOnkoNet: FZI überführt digitale Onkologie-Lösungen in die Versorgung auf dem Land Im Forschungsprojekt RegioOnkoNet schaffen die Verbundpartner eine sichere digitale Infrastruktur, die Fachärzte, Hausärzte und Krebspatienten in der Modellregion Karlsruhe–Freiburg standortunabhängig vernetzt. Das FZI Forschungszentrum Informatik bringt hierfür prototypische digitale Lösungen […]
Mehr erfahren zu: "Knowledge Connector: Bessere klinische Entscheidungen in der molekularen Präzisionsonkologie" Knowledge Connector: Bessere klinische Entscheidungen in der molekularen Präzisionsonkologie Forschende am Nationalen Centrum für Tumorerkrankungen (NCT) Heidelberg und am Deutschen Krebsforschungszentrum (DKFZ) haben mit dem Knowledge Connector ein digitales Werkzeug entwickelt, das klinische Entscheidungen in der molekularen Präzisionsonkologie erheblich […]
Mehr erfahren zu: "USA nicht mehr in der WHO: Weniger Geld, fehlende Expertise" USA nicht mehr in der WHO: Weniger Geld, fehlende Expertise Für den Chef der Weltgesundheitsorganisation gibt es durch den US-Austritt nur Verlierer. Was den USA und dem Rest der Welt abhandenkommt.