Gehemmte Neuronen als Taktgeber für Gedächtnisprozesse

Je mehr über die Milliarden von Nervenzellen im Gehirn bekannt ist, desto weniger erscheint ihr Zusammenspiel spontan und zufällig. Welche Harmonie der Verarbeitung von Gedächtnisinhalten zugrunde liegt, hat die Arbeitsgruppe von Prof. Marlene Bartos am Institut für Physiologie I veranschaulicht.

Die mit einem Kollegen vom Institute of Science and Technology Austria entstandene Studie hebt die Rolle von hemmenden Schaltkreisen bei der Entstehung von hochfrequenten Hirnwellen im Hippocampus hervor. Damit liefert das Forscherteam Anhaltspunkte dafür, wie das Gehirn gedächtnisrelevante Informationen verarbeitet.

„Forschende vermuten schon länger, dass Frequenzen über 30 Hertz die synchrone Zusammenarbeit verschiedener Zellnetzwerke des Gehirns koordinieren. Bekannt ist auch, dass die Aktivität in diesem Frequenzbereich beispielsweise bei Alzheimer-Patientinnen und -Patienten deutlich reduziert ist“, fasst Bartos den Grundgedanken ihrer Forschung zusammen.

 
Wie aber kommt es zu diesen als Gamma-Wellen bezeichneten Signalen an verschiedenen Orten gleichzeitig? Und was konkret bedeutet das für das menschliche Gedächtnis? Als Experten auf dem Gebiet der synaptischen Verknüpfungen schauten sich Bartos und ihr Team die Kommunikation zwischen sogenannten Interneuronen im Hippocampus von Mäusen genauer an. „Vergleichbar zu Instrumentengruppen in einem Orchester gibt es kleine Schaltkreise, an denen inhibitorische Interneurone wesentlich beteiligt sind“, erklärte Bartos. „Wie die Aufgabe des Dirigenten, an manchen Stellen beispielsweise die Bläser in den Hintergrund zu rücken, um ihnen im nächsten Moment wieder volles Gewicht zu geben, kann man sich auch ihre Rolle vorstellen.“

Wichtigste Beobachtung der Studie war, dass die umliegenden Zellen, wenn sie sich aus ihrem Ruhezustand lösen, empfänglich gegenüber bestimmten Informationen sind. Sie werden dann zur Bildung eines gemeinsamen Aktionspotentials angeregt, sodass ein Signal auf andere Neuronen übertragen werden kann. Dies wiederum lässt sich elektrophysiologisch als Entladung von Gammawellen messen.

 
„Das Interessante daran ist, dass sich die Mikroschaltkreise nicht ineinander einmischen, sondern parallel verschiedene Informationen, wie zum Beispiel die Attribute Form und Farbe eines Gegenstands, abspeichern oder abrufen können. Dies erlaubt die zeitgleiche parallele Verarbeitung und das Speichern von Information. Wir sind der Meinung, dass auf diese Weise erste Gedächtnisspuren gelegt werden“, so Bartos.

Um dem Gedächtnis wirklich auf die Spur zu kommen, wird es allerdings noch viel mehr Grundlagenforschung benötigen. Bartos und ihr Team arbeiten mit Hochdruck daran, dass ihre Erkenntnisse in ein paar Jahren auch für die Therapie von neurodegenerativen Krankheiten nutzbar sind.

 
Literatur:

 

Quelle
Albert-Ludwigs-Universität Freiburg im Breisgau
Mehr anzeigen
Close